CONTINUED FRACTIONS
BEST APPROXIMATIONS

a

7 is said to be a best approximation to o (a € Z b€ N) if

p
a__

q
We now prove that the convergents to an (irrational) number give a sequence
of best approximations.

Note that as in the previous result, we often investigate |go — p| rather than

a
<’a—5‘$q>b.

’C( — g‘. Inequalities involving the former are often a bit stronger the those
imvolving the latter.

Theorem

If |go — p| < |gnx — pnl, n > 0 where Z—: is a convergent of the continued
fraction for o, then ¢ > ¢,.

Proof

Assume that |ga — p| < gno — py| and that ¢ < g,. It follows that ¢ <
¢nt+1 (n > 0). Consider the equations

T.Pp +YPnt1 = P
TGQn +Y-Gnt1 = ¢

Pndn+1 — Pni1qn = (—1)", so this pair of equations has integer solutions x, y.
Now y =0 = p =2ap, ¢ = xq,, © # 0 and so |ga — p| = |z||gnx — pp| >
|Qna - pn|

If z =0 then y # 0 and ¢ = yq,, which contradicts ¢ < ¢,.

So x and y are non-zero.

We now show that = and y are of opposite sign.

0< q=2qn + YGn+1 < Gn+1

x and y cant both be <0 as ¢ >0

x and y cant both be > 0 otherwise > ¢,11

Now ¢,a—p,, and ¢, 11|alpha—p, 1 have opposite signs, since the convergents
alternate either side of o, so z(g,a — p,,) and y(g,+10 — ppy1) have the same
sign.

Also

qo — p = (qur — pn) + Y(gny1 — Prt1)

SO



|q05 - p| = |x<Qna - pn)l + ‘y(QnJrl@ - pn+1)|
> ’x(Qn@ - pn)| > IQnOé - pn|

This contradiction proves the theorem.

This proof goes back to Legendre, and is quoted in Perron.
Now T T ‘oz Z”

andg < ¢, multiplying the inequalities

= |ga — p| < |gna = pu| = ¢ > qn
So the convergents are the best approximations to a. But how good are
they?
Now we have already seen the equation

_ Do _ (="

Gn Qn<04n+1Qn + anl)

SO

alpha — Pn

4n

1 1 1 1
Gn(ni1@n + Gn-1) ~ G(Gni1Gn + G1) Gl @2

We already know from Dirichlet’s theorem that an 1rrat100nal « has infinitely
many rational approximations 5 satisfying ’a ‘ <z
The sequence of convergents supplies such a set.

This does not give them all however. E.g. consider rational approximations
to 179
207

The convergents are
15 64 143 779

37 4a A 44 o0 ) on~"
417 38 207

7979 6

T~ 138x1073
207 21 4347 8
1
— &~ 227Tx107°
212
However, notice that % = 145j16;l

I shall not pursue this, but instead show that if ‘a ‘ < 5z (p, q) = 1 then

§ is one of the convergents of the continued fraction for Q.
Proof



Suppose not. Then ¢, < ¢ < ¢,11 determines an integer n, and |go — ¢| <
|gnce — pp| is impossible. ( The earlier theorem can be improved to ¢ > ¢,11)

50 ana—pnl < Iqa—pl <5

ie 2qqn
Now
L < 19pn = pa] (even if ¢ = ¢, b # &)
q4qn d4n qa gn
_ | 1_?‘
an g
< la— Pl o= p|
an q
1 1
- ZQQn-+-§§§
1 1
24Gn - 2¢
S0 q < @, This is a contradiction so the theorem is proved.
Now of any two successive convergents, at least one satisfies ’a — f‘ <3 2
Proof

Since the convergents are alternatively greater and less then x

Prn+1 Pn| _ |Pn+1 ' Pon
—— — | =|— —a|+ |a——
Gn+1 dn Gn+1 an
Suppose the result false. Then
1 1 n n
T—i_—z p—H—a‘—i—Oé—p—
20011 24 Gn+1 Gn
_ |Pnt1 _ Pn
gn+1 dn
B 1
Gnn+1

i.e. ( L —i) < 0ie. ¢uy1 = @n. Thisistrueonlyifn=1a; =1 ¢, =

dn+1
qo = 1. Otherwise ¢, 11 > qn.

Even in this case
P1 1 1 a9

0< g1 —— <1
a1 1+ as+ as +1

N | —

3



so the theorem is still true.

Further, of any three successive convergents, at least one satisfies ’oz — %‘ <
1

q>V/5

Proof

1 1

qn((l/n—I—IQn + Qn—l) qu (an+1 + q:;;l)

Now suppose that

o, + -2 < \/gfori:n—l,n,n+1
di—1
Then
1 ' '
Qp_1 = Qp—1 + — and In=1 :an_1+q ’
(879 dn—2 dn—2
SO

1 — —
7_|_C] 1:an_1+q 3§\/5

by assumption and

1 = an1§<x/5+q“> <f—q”1>

Qp Gn-1 Gn—2
- 5+1—\/5<M+q"1>
Gn—1 Gn—2

giving —gzj + —gz:; <5

In fact since LHS is rational we have strictly less then, so

2
<Qn—1> o <Qn—2> \/5+1 <
dn—1 Gn-1

2
n— 1 1.
(q 2 \/5) < - 1le.

e

n—1 2 4
qn—2 1

> (V-1

Gn—1 2( )

This has used i =n — 1,n. Using 1 =n,n + 1 gives

qn—1 1
—(vb—1
> 3(V5-1)

4



Now Gn = QnQpn-1 + qn—2

dn qn—2 2 1
p = — < —~(V5-1)=1
qn—1 qn—-1 \/5—1 2( )

a, < 1 1is a contradiction.
Now let a = 1(v/5-1)=1[0,1,1,1,.. ]
Suppose that there are an infinite number of solutions of

P 1
—=l<—-—A>V5
S R V5
_ 5 1 _ 1
a =1L+ 5 where [§| < 5 < =
Theng:qa—pand
6 1 1 1 1
———qx/g:q(—\/g—1>—p——q B=—2q—p
q 2 2 2
SO
2
5) 1 2
5 -s = (o)
<> Vo4 gt = (50t
SO

(5 2
<5> — V5 =p’pg - ¢

when ¢ is large, since |§|v/5 < 1 the LHS is between —1 and +1 whereas RHS
is an integer.

So p? +pqg—q® = 0i.e.(2p+ q)? = 5¢® which is impossible for integers p and
q. So % is the best possible. This establishes Hurwitz theorem.

We now investigate for which numbers /5 is best possible. It turns out that
the criterion is that these numbers should end in an infinite tail of 1’s. We
generalise this.

Definition

Two irrational numbers o and 3 are equivalent if they have the same tail to
their continued fraction, in the sense that

a = [ag;ay,...,ax, co,C1Cy ...
B = [bo;bl,-~~7bj700,01702---]
Theorem

Two irrational numbers a and [ are equivalent if and only if there exist
integers a, b, ¢, d with ad — bc = +1 such that



_ AB+B

T ey D
Lemma
if x = ggf; where £ > 1, PS — RQ = =1, andQ>S>0then§andg

are two consecutive convergents to the continued function for x. If % is the
(n — 1)th, g is the nth and ¢ is the (n — 1)th complete quotient.
Proof

P ( Pn

Q- Ao, A1y - -y Q] = 0
n can be even or odd. Choose it so that PS — QR = (—1)"*
(p,g)=1s0 P=p, Q=gq,
SO S — qn R = (_l)n_l = Pndn—-1 — Pn—19n
S0 pn(s - Qn—l) = qn(R - pn—l)
SO qn|S — qn_1 since (pp,qn) = 1.
Now

¢, = Q>85>0
an Z Qn—1 > 0 so
dn > |S_Qn—1|

Hence S — ¢,,-1 = 0 and so R — p,_1 = 0 thus

R __ pn-1 _ Pné+Pn—1
S dn—1 and z qné+an—1
1.€.
r = [a07a17"'7an7€]

- [CLOaa'h"'anaCU)cl]

wheref = [co;¢1,¢...] and ¢g # 0 as € > 1 and so & is the n + 1th complete

quotient.

Proof of theorem

Suppose « = |ag, . . . ag, Co, 1 - . .] = [ag, - .. ag, W]
6: [bo,...bj,co,cl...] = [bo,...bj,w]

then

_ Prw A+ Pr—1
o= —

DkQk—1 — Pr—1qr = E£1
QW + qr—1



_ piw + iy
%’w + qz'fl

eliminating w will give

Pid 1 — P g = £l

a = égig where AD — BC = +1.
Now suppose
A+ B
o= Cit D AD — BC = #+1
assume w.l.o.g. CG+ D > 0.
Let 3 = [by, ... by_1 3] = Le=1Ditbezz
qr—1Bktqr—2
substituting fo § in a = égig gives
_ PP+ R
bkt
where
P = Apy1+ Bgi
R = Apy2+ Bgra
Q = Cpr1+ Dgr
S = Cpr—ao+ Dar—2

So P.Q,R,S € Z and
PSoR = (AD — BC)(pr-1Gk—2 — Pe—-1qr—1) = *1

1

_ DPk-1 1 _ DPk—2
Now ’6 ol < 2 and ‘B o] < o
SO
€ g
Ph—1 = Qp—1B + ——iDr—1 = Q158 +
k-1 k-1

where |e| < 1 and |¢| < 1.

So
Ce
Q = (CB+D)gp—1+—
qk—1
C !
S = (CO+D)grs+—
k—2



Now CG+ D > 0 and ¢r_; > qr_1 also ¢, — o0 as n — 00. So provided k is
sufficiently large, @ > S > 0

For such k, a:%PS—QR:il,Q>S>O

so [ is a complete quotient in the continued fraction for o by the lemma
thus oo = [ag; ay, ... Gm, bk, by - . ] 1.e. v is equivalent to (3.
We now define the Markov constant of an irrational number « by

p
a__

M(«) = sup {)\ : v

1
< — has infinitely many solutions ]—9}
q

So Huzwitz theorem says

Voo M(a > ﬁandM(HT‘@) = /5.

We now extend this :

Theorem

If « is equivalent to 3 then M(a) = M(B). If o is not equivalent to £
then M(a) > /8. If a is equivalent to 1+ /2 then M(a) = V/8.

Proof

Recall that

S

Dk 1
o — — =
dk Qe ( Q1 + Q1)
1

ar (Oék+1 + q’;:)
Thus
M(a) = lim sup <ozk+1 + &>

Recall from the discussion of symmetric continued fractions that

dk
—— = [ag; ap_1, . . . a1
qrk—1
SO
Qr—
Ak=L = [0, apQp—1 ... al]
dk
SO

M(a) = ’}erolo sup ([0; ak, ag_1,...a1] + ags1)

Now if «v is equivalent to 3 then §; = oy and b; = a;, for all sufficiently large
k and j for which 7 — k has a suitable fixed value h.



If the convergents of § are =L then for j and k differing by h, the continued
Qg

fractions for %=1 and have rhe same partial quotients at the beginning,

and the length of agreement can be made large by making j and k sufficiently
large.
Suppose q’;;l and 9=t agree in the first [; partial quotients, and denote the

Qj
common convergents by = (i = 0,...1)
1
SO
k-1 T1—1%T1 + 712
Qx 81-1%] + S1—2
and

Qi1 riayitrio

Q; Si—1Y1 + S1—2

Then [x;] = [y;] = common [ + 1th partial quotient so |z; — y| < 1.
Then we have

k-1 Qj1 _ |21 — uil 1
Qk Q; (s1m120 + si—2) (Si1y + si-1) ~ siy
Now provided j and k are large enough, we have
k-1 Qjﬂ e
dk Qj

since s;_1 > (I — 1)th term in Fibonacci sequence.
Also for large 7,k o = 3}, so

( k+M>—<ﬁj+Qj‘l>:q’“‘l—Qj‘l — 0 as j,k — o0, j—k=h
qk Qj Ak Qj

Thus M(«) = M(B)

If « is not equivalent to @ then infinitely many of the a; are > 2.
If a;, > 3 for infinitely many % then

M(a) = limsup <ak+1 + %)

> lim sup(ap1) > 3

So suppose that the a; contain only 1’s and 2’s from some point on.
Case [



ar, = 2 from some point on. Then « is equivalent to 1 + /2 = [2;2,2,.. ]

M(a) = limsup (Oék+1 + M)

qk
py1 = [2:2,..]=1+V2
_ 1
Bkt _ [0;2,2,...] — as k — oo
Qk — 1++2
k times
So]\/[(a):1+\/§+1+1\/§:\/§

Case II
Suppose thee are infinitely many 1’s and 2’s.
Then there are infinitely many k such that ax = 1 and a;; = 2, so

94 1 1 S 94 1 7
(8% = _— — —
wH Qpq2+ Qi3 2+% 3
e 11 > 11 > 11:_
qk ap+ ap—1+ 1+ 1+T

ak—1

SoM(a)2§+%:%7>\/§
Note: This shows that if & % 1+ /2 then M(a) > 3.

Theorem

There are uncountably many « with M («) = 3

Proof

Let = [1;1,1,...1,2,2,1,1,...1,2,2,1,1,. .. 1,2,2,1, .. ] 1 <79 <73
— — —_—

T1 T2 3

(i) If agyy = 1 then azyy < 2 and since q’;—;l <1, apy + q’;;l < 3.

(ii) If agr1 = 2 and a4 = 2 then

_|_Qk71 (2+1 1 1 >+(1 1 1>

a — = —_—— .. — .=
AP 2F 1+ 1+ +1+ 1

If k is large the sequences of 1’s can be made as long as we like before

a 2 appears. S0 a1 + = — 2+ 2+@ + \/5271 =3

(iii) If ax,; = 2 and a; = 1 then

Qk—1 1 1 1 1 1 1 1
a +—:(2+——...)+<——..._)%2+ +
SN 1+ 1+ 241+ 1 V5l

10



So M(a) = lim sup (O[k+1 + q’;:) =3

Two such o’s are equivalent iff their associated sequences of r;’s are equiv-
alent in the same sense of having equal tails. There are uncountably many
inequivalent such sequences of r;’s so uncountably many inequivalent @ with
M(a) = 3.
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