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a) Prove that, for |z| < 1

n—1

®© gint >z
dt = .
/0 Z 2+1

t_
et —x n
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Prove that for all real values of a,
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[In both cases each step in the calculations should be carefully explained,
and a clear statement given of any theorems applied, together with a proof
that any conditions for the application of theorems are satisfied.]



Answer
In both examples we use the following theorem, which is a consequence of
Lebesgue’s Dominated Convergence Theorem.

Theorem A Suppose that {f,} is a sequence of integrable functions. Then
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ditions are in fact equivalent.)

% sint ©  sint
dt :/ ———dt
2) /0 et —x o e(l—3%)

Now for ¢t > 0 ° < |z| < 1 and so

e

1 e
forall t > 0 _£:1+E+E+E+...

et

Thus for |z] < 1

> gint oo &0 sint
dt = / ey 1
/0 0 ,; ent (1)

et —x
o o)
Now 3" | :
n=1"0 er

<3 [Clap = 3o f 1
€r — = — < o0 Ior |x| <l
<3 [l =3 i

We can thus apply theorem A to interchange the order of integration
and summation in equation (1). We then have
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The inversion of order of summation and integration at (*) is justified
by the steps after (*) which (with the factor (—1)" removed, and a
replaced by |a|) show that Y [|f.| < oo, thus enabling theorem A to
be applied.



