Question

Discuss Riemann and Lebsgue integrability on $(0,1)$ of the functions f and g defined below. In each case calculate the integrals, where they exist.
(a) $f(x)=1$ if x is irrational,
$f(x)=\sin \frac{1}{x}$ if x is rational.
(b) $g(x)=x$ if x is irrational,
$g(x)=\frac{b+1}{c}$ if x is rational, and $x=\frac{b}{c}$, where b and c have no common factors.
(In each case you should prove any assertions you make concerning continuity of function. Conditions for integrability should be stated but not proved.)

Answer

(a)

$$
\begin{array}{lll}
f(x)=1 & x \text { irrational } & 0<x<1 \\
f(x)=\sin \frac{1}{x} & x \text { irrational } & 0<x<1
\end{array}
$$

f is continuous if $x=\frac{1}{\left(2 n+\frac{1}{2}\right) \pi} n \epsilon \mathbf{N}$ and discontinuous elsewhere (proof is standard analysis.)
Thus the set of discontinities of f in $(0,1)$ has measure 1 and so f is not R - integrable. However $f=1$ a.e. in $(0,1)$ and s f is Lebesgue integrable and

$$
L \int_{0}^{1} f=1
$$

(b) g is continuous at all irrational values (proof is standard analysis)

So the set of discontinities has measure zero and so g is R - integrable. Thus g is L-integrable. $g(x)=x$ a.e. and so

$$
R \int_{0}^{1} g=L \int_{0}^{1} g=L \int_{0}^{1} x=\frac{1}{2}
$$

