## Question

Let $f$ be a positive bounded measurable function with domain $[0,1]$. Using the definition of the Lebesgue integral of $f$ over $[0,1]$, in terms of sequences of simple functions, prove that

$$
\int_{0}^{1} f=m_{2}(E)
$$

where $m_{2}$ denotes Lebesgue measure in the plane, and $E$ is the region under the graph of $f$, i.e.

$$
E=\{(x, y) \mid 0 \leq x \leq 1 ; 0 \leq y \leq f(x)\}
$$

## Answer

In defining $\int_{0}^{1} f$ we prove that a positive measurable function $f$ can be expressed as a limit of a monotonic increasing sequence of simple functions. A simple function is one taking a finite number of values on measurable subsets of $[0,1]$. If $\{E i\}_{i=1}^{n}$ is a measurable partition of $[0,1]$ then a simple function is one of the form
$g(x)=\sum_{i=1}^{n} c_{i} X_{E i}(x)$, and we define
$\int_{0}^{1} g=\sum_{i=1}^{n} c_{i} m(E i)$
We then prove that if $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are two increasing sequences of functions converging to $f$ then,
$\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}=\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}$
We thus define $\int_{0}^{1} f=\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}$ for any sequence $\left\{f_{n}\right\}$ of simple functions converging to $f$.
We now use this to prove the stated result.
Let $Q_{p, s}=\left\{x \in[0,1) \left\lvert\, \frac{p-1}{2^{s}} \leq f(x)<\frac{p}{2^{s}}\right.\right\} \quad p=1,2, \cdots, 2^{2 s}$
Since $f$ is bounded, if $s$ is large enough then $\left\{Q_{p, s}\right\}_{p=1}^{2^{2 s}}$ forms a partition of $[0,1)$.
We consider a sequence of simple functions defined for such $s$.
$f_{s}(x)=\frac{p-1}{2^{s}}$, for $x \in Q_{p, s} \quad p=1,2, \cdots 2^{2 s}$
Clearly $f_{s}$ is a simple function. It can be shown that $f_{s} \rightarrow f$.

Let $S_{p, s}=\left\{(x, y) \mid x \in Q_{p, s}\right.$ and $\left.0 \leq y \leq \frac{p}{2^{s}}\right\}$
Then $E \subseteq \bigcup_{p} S_{p, s}$ for all $s$. Thus $E \subseteq \bigcap_{s} \bigcup_{p} S_{p, s}$
Now let $(x, y) \epsilon \bigcap_{s} \bigcup_{p} S_{p, s}$ then
for all $s$, there exists $p$, such that $x \in Q_{p, s}$ and $0 \leq y \leq \frac{p}{2^{s}}$
for all $s$, there exists $p$, such that $\frac{p-1}{2^{s}} \leq f(x)<\frac{p}{2^{s}}$ and $0 \leq y \leq \frac{p}{2^{s}}$
for all $s, \quad 0 \leq y \leq f(x)+\frac{1}{2^{s}}$ i.e. $y \leq f(x)$
Thus $\bigcap_{s} \bigcup_{p} S_{p, s}=E$
Now let $T_{p, s}=\left\{(x, y) \mid x \in Q_{p, s}\right.$ and $\left.0 \leq y \leq \frac{p-1}{2^{s}}\right\}$
Then $m_{2}\left(\bigcup_{p} T_{p, s}\right)=\sum_{p} \frac{p-1}{2^{s}} m\left(Q_{p, s}\right)=\int_{0}^{1} f_{s}$
$\bigcup_{p} S_{p, s}-\bigcup_{p} T_{p, s}=\bigcup_{p}\left\{(x, y) \mid x \in Q_{p, s}\right.$ and $\left.\frac{p-1}{2^{s}}<y \leq \frac{p}{2^{s}}\right\}$
Thus $m_{2}\left(\bigcup_{p} S_{p, s}-\bigcup_{p} T_{p, s}\right)=\sum_{p} \frac{m\left(Q_{p, s}\right)}{2^{s}}=\frac{1}{2^{s}}$
Thus $m_{2}\left(\bigcup_{p} S_{p, s}\right)=m_{2}\left(\bigcup_{p} T_{p, s}\right)+\frac{1}{2^{s}}$
$E=\bigcap_{s} \bigcup_{p} S_{p, s}$ and $\bigcup_{p} S_{p, s}$ has finite measure as $f$ is bounded, also $\left\{\bigcup_{p} S_{p, s}\right\}_{s}$ is a decreasing sequence of sets.
Thus $m_{2}(E)=\lim _{s} m_{2}\left(\bigcup S_{p, s}\right)$
$=\lim _{s}\left[m_{2}\left(\bigcup_{p} T_{p, s}\right)+\frac{1}{2^{s}}\right]=\lim _{s} m_{2}\left(\bigcup_{p} T_{p, s}\right)$
$=\lim _{s} \int_{0}^{1} f_{s}=\int_{0}^{1} f$
Hence the result.

