Question

Two particles, one of mass m and one of mass $\alpha m(\alpha>0)$, both have speed U. They suffer a head-on collision. What are their speeds after the collision of their coefficient of restitution is e ?

Answer

Before
After

Conservation of mometum

$$
\begin{align*}
m U-\alpha m U & =m V+\alpha m W \\
U(1-\alpha) & =V+\alpha W \tag{1}
\end{align*}
$$

Newton's law of restitution

$$
\begin{aligned}
-e 2 U & =V-W(2) \\
(1)-(2) & \\
u(1-\alpha+2 e) & =\alpha W+W \\
W & =\frac{u(1-\alpha+2 e)}{1+\alpha}
\end{aligned}
$$

sub into (1) and rearrange

$$
\begin{aligned}
V & =u(1-\alpha)-\frac{\alpha u(1-\alpha+2 e)}{1+\alpha} \\
& =\frac{u(1-\alpha)(1+\alpha)-u \alpha(1-\alpha+2 e)}{1+\alpha} \\
& =\frac{u(1-\alpha(1+2 e))}{1+\alpha}
\end{aligned}
$$

Thus the answers are:

$$
W=\frac{u(1-\alpha+2 e)}{1+\alpha} ; \quad V=\frac{u(1-\alpha(1+2 e))}{1+\alpha}
$$

