QUESTION

Use part (i) of question 4 above to prove that if p is a prime greater than 3 , then $p^{2}+2$ is composite.
ANSWER
If p is a prime >3, then by question $4(\mathrm{i})$, either $p=6 k+1$ or $p=6 k+5$ for some integer k. Thus $p^{2}+2$ is either $(6 k+1)^{2}+2=36 k^{2}+12 k+3$ or $(6 k+1)^{2}+2=36 k^{2}+60 k+27$ and both of these are divisible by 3 . As $p^{2}+2>p>3, p^{2}+2$ must be composite.

