QUESTION

- (i) Prove that any prime p > 3 is either of the form 6k + 1 or of the form 6k + 5 for some integer k.
- (ii) Prove that the product of any two integers of the form 6k + 1 is of that same form.
- (iii) Adapt the proof of Theorem 2.7 to prove that there are infinitely many primes of the form 6k + 5.

ANSWER

- (i) By the division algorithm, any integer can be written in one of the forms 6k, 6k+1, 6k+2, 6k+3, 6k+4, 6k+5. Of these, 6k, 6k+2 and 6k+4 are even, and 6k+3 is divisible by 3. Thus none of these can represent a prime > 3. Thus p must be of the form 6k+1 or 6k+5.
- (ii) (6k+1)(6l+1) = 36kl+6k+6l+1 = 6(6kl+k+l)+1. Thus the product of two integers of the form 6n+1 is again of the form 6n+1
- (iii) Suppose there are only finitely many primes of the form 6k + 5. Let them be $p_1, \ldots p_n$, and consider $N = 6(p_1 \ldots p_n) 1$

Now $N = 6((p_i ldots p_n) - 1) + 5$, so N is of the form 6k + 5. Thus neither 2 nor 3 divides N, so by (i) the prime divisors of N are either of the form 6k + 1 or 6k + 5. Suppose every prime dividing N is of the form 6k + 1. Then, by repeated use of (ii), N would also be of that formbut we have seen that this is not the case.

Thus N has a prime divisor, p say, of form 6k + 5. By assumption, p_1, \ldots, p_n are the only such primes, so $p = p_i$ for some i, and in particular $p|p_1 \ldots p_n$. But p|N, so by theorem 1.3(4), $p|6(p_1 \ldots p_n) - N$, i.e. p|1- but this contradicts p prime, as all primes are > 1.

This contradiction shows our original assumption was wrong, so there are infinitely many primes of the form 6k + 5.