QUESTION

Prove that, for any prime $p,\ \sqrt{p}$ is irrational.

ANSWER

Suppose \sqrt{p} is rational, say $\sqrt{p} = \frac{a}{b}$ where $a, b \in \mathbb{Z}$, and $\frac{a}{b}$ is cancelled to it's lowest terms, so that $\gcd(a,b) = 1$. We have $b\sqrt{p} = a$, so, on squaring, $b^2p = a^2$. Thus $p|a^2$, so by question 2, $p^2|a^2$, say $a^2 = p^2c$. Thus $b^2p = p^2c$, giving $b^2 = pc$. Hence $p|b^2$, and so by question 2, p|b. Thus p|a and p|b, contrary to $\gcd(a,b) = 1$. Thus \sqrt{p} is irrational, as claimed.