MA181 INTRODUCTION TO STATISTICAL MODELLING GOODNESS-OF-FIT TEST

Example - Mendel's peas Mendel's double intercross data for (Round,Yellow)× (Wrinkled, Green) peas. The expected frequencies are in the ratios 9:3:3:1 on the assumption that the factors segregate independently.

	$R Y$	$W Y$	$R G$	$W G$	Total
Observed frequency	315	101	108	32	556
Expected frequency	$312 \frac{3}{4}$	$104 \frac{1}{4}$	$104 \frac{1}{4}$	$34 \frac{3}{4}$	556

$$
x^{2}=\frac{\left(2 \frac{1}{4}\right)^{2}}{312 \frac{3}{4}}+\frac{\left(3 \frac{1}{4}\right)^{2}}{104 \frac{1}{4}}+\frac{\left(3 \frac{1}{4}\right)^{2}}{104 \frac{1}{4}}+\frac{\left(2 \frac{3}{4}\right)^{2}}{34 \frac{3}{4}}=0.470
$$

Critical regions with $\nu=3$ are $x^{2}>7.815$ for $\alpha=0.05$ and $x^{2}>$ 11.34 for $\alpha=0.01$. Therefore accept H_{0} : the two genes segregate independently.

Example - Pharbitis Double intercross data for two genes A and B in Pharbitis. The expected frequencies are again in the ratios 9:3:3:1, on the assumption that A and B segregate independently.

	$A B$	$A b$	$a B$	$a b$	Total
Observed frequency	187	35	37	31	290
Expected frequency	$163 \frac{3}{8}$	$54 \frac{3}{8}$	$54 \frac{3}{8}$	$18 \frac{1}{8}$	290
$x^{2}=\frac{\left(23 \frac{7}{8}\right)^{2}}{163 \frac{1}{8}}+\frac{\left(19 \frac{3}{8}\right)^{2}}{54 \frac{3}{8}}+\frac{\left(17 \frac{3}{8}\right)^{2}}{54 \frac{3}{8}}+\frac{\left(12 \frac{7}{8}\right)^{2}}{18 \frac{1}{8}}=25.096$					

Critical regions with $\nu=3$
$x^{2}>7.815$ for $\alpha=0.05$
$x^{2}>11.34$ for $\alpha=0.01$
$x^{2}>16.27$ for $\alpha=0.001$
Reject H_{0} and conclude (very strongly) that the genes are linked.

Estimating parameters

Example - Pharbitis revisited One theory suggests that the probabilities for the four cells can be written as $(2+\theta) / 4,(1-\theta) / 4,(1-\theta) / 4$ and $\theta / 4$ for some parameter θ. The maximum likelihood estimate of θ is $\hat{\theta}=0.4835$, which leads to the expected frequencies given in the following.

	$A B$	$A b$	$a B$	$a b$	Total
Observed Frequency	187	35	37	31	290
Expected frequency	180.054	37.446	37.446	35.054	290

$$
x^{2}=\frac{(187-180.054)^{2}}{180.054}+\ldots+\frac{(31-35.054)^{2}}{35.054}=0.902
$$

Critical regions with 2 degrees of freedom are
$x^{2}>5.991$ for $\alpha=0.05$
$x^{2}>9 / 210$ for $\alpha=0.01$
Accept H_{0} : model given as above.
Example Peas in pods The table below gives, in its second column, the frequency distribution of the number Y of peas found in the pod of a four-seeded line of pea. A total of 269 pods were inspected.
$\hat{\pi}=0.5530$

Number of peas in pod	0	1	2	3	4	Total
Observed frequency	16	45	100	82	26	269
Expected frequency	10.74	53.15	98.62	81.33	25.15	268.99

$$
x^{2}=\frac{(16-10.74)^{2}}{10.74}+\ldots+\frac{(26-25.15)^{2}}{25.15}=3.88
$$

Critical regions with three degrees of freedom as on page 1. Do not reject H_{0} : model given by binomial distribution.

Small expected frequencies No expected frequency should be smaller than one and no more than 20% should be less than five. Otherwise it is necessary to pool cells.

Example - Poisson distribution The number Y, of α-particles emitted by a film of Polonium in 2608 intervals of $\frac{1}{8}$ minute was given on the Poisson distribution handout. The end of the table is as follows:

Frequency of Intervals Observed		
10	10	Poisson, E_{y}
11	4	11.3
12	0	4.0
13	1	1.3
14	1	0.4
≥ 15	0	0.1

The last four cells may be pooled to give the following complete table.
$\hat{\mu}=3.8715$

y	0	1	2	3	4	5	6	7	8	9
O_{y}	57	203	383	525	532	408	273	139	45	27

E_{y}	54.3	210.3	407.1	525.3	508.4	393.7	254.0	140.5	68.0	29.2

10	11	≥ 12	Total
10	4	2	2608

11.3	4.0	1.8	2607.9

$x^{2}=13.0$
Critical regions with 11 degrees of freedom
$x^{2}>19.68$ for $\alpha=0.05$
$x^{2}>24.72$ for $\alpha=0.01$
$x^{2}>31.26$ for $\alpha=0.001$
Accept H_{0} : model is given by Poisson distribution.

