
MA181 INTRODUCTION TO STATISTICAL MODELLING
HYPOTHESIS TESTING

Suppose X is a random variable that follows a distribution dependent on a
parameter θ and it is desired to test a hypothesis about θ on the basis of a
random sample of observations X = (X1, X2, . . . , Xn) of X.

Definitions The hypothesis under test is called thenull hypothesis and is
denoted by H0. If the test leads us to reject H0, then we accept an
alternative hypothesis H1. Consequently, H0 and H1 must, between
them, cover all the possible values of the parameter.

Usually, H0 is of the form H0 : θ = θ0 while H1 takes one of the three
forms H1 : θ > θ0, H1 : θ < θ0 and H1 : θ 6= θ0.

The problem of hypothesis testing reduces to that of dividing the sam-
ple space into two regions, that for which H0 is rejected, called the
critical region(C) (or rejection region), and that for which H0 is ac-
cepted (or more properly not rejected), called the acceptance region.

When an experiment is carried out, there are two possible states of
nature, H0 true and H0 false, and two possible decisions which might
result, reject H0 and accept H0. The effects of this set up can be
described by the following table.

Accept H0 Reject H0

H0 true
√

Type I error

H0 false Type II error
√

Let

α = P (Type I error) = P (Reject H0|H0 true) = P (X ∈ C|H0).

Then α is called the size of the test or the significance level.

Let

β = P (Type II error) = P (Accept H0|H1 true).

Then

1− β = P (Reject H0|H1) = P (X ∈ C|H1)

1



is called the power of the test, or the power function when regarded as
a function of the parameter.

A good test would have small values of both α and β, i.e. a small
size and a large power. It is usually impossible to achieve both of these
simultaneously, so the standard procedure is to fix α at some acceptable
level and then find the test that maximises 1− β. The commonly used
value of α is 0.05 but a value of 0.01 can be used for a more stringent
test and a value of 0.001 for a very stringent test.

Normal distribution One-tailed test

SupposeX ∼ N(µ, σ2) where, for the moment, σ is assumed known and
we wish to test the null hypothesis H0 : µ = µ0 against the alternative
H1 : µ > µ0. A random sample X1, X2, . . . , Xn is taken and yields
observed values x1, x2, . . . , xn. It can be shown that the most powerful
test of H0 against H1 leads us to reject H0 is the sample mean x is
large or, equivalently, if the critical region is defined by

z =
x− µ0

σ√
n

> c,

where z is the standardised form of x under H0. The value of c is found
by considering the fact that, under H0,

Z =
X − µ0

σ√
n

∼ N(0, 1).

Hence, if a test of size (significance level) α is desired, c is given by

α = P (Z > c|µ = µ0) = 1− Φ(c),

where Φ(.) is the cumulative distribution of the standard normal distri-
bution. The commonly used values of α and c are given in the following
table to sufficient accuracy for practical purposes:

α c
0.05 1.645
0.01 2.326
0.001 3.090
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We tend to state that, if z > 1.645, the test is significant to 5% and
there is “some” evidence to reject H0. If z > 2.326, there is “strong”
evidence to reject and, if z > 3.090, there is “very strong” evidence to
reject.

Suppose, however, that instead of the above, we wished to test H0 :
µ = µ0 against H1 : µ < µ0. Then the best critical region is defined by
z < −c, where c is given by

α = P (Z < −c|µ = µ0) = Φ(−c).

In view of the symmetry of the normal distribution, the values of c
usually required are those given in the above table.

Example I.Scribe Inc. manufacture ball point pens and have done so for
many years. The amount of ink in a pen is sufficient to draw a line
the length of which is normally distributed with standard deviation 0.1
km. The firm tries to keep the ink-filling machine running so that the
mean length of line is 4km, but there is a suspicion in the mind of the
operator that the mean has fallen somewhat. Consequently, a random
sample of eight pens are placed in a birometer and the lengths of line
measured (in km) with following results:

3.81, 3.92, 3.94, 3.93, 3.72, 4.05, 3.88, 3.83.

It is desired that the test be carried out with α = 0.01.

We are here testing H0 : µ = 4 against H1 : µ < 4 so that the critical
region of a 1% test is z < −2.326. Since x = 31.08/8 = 3.885, the
observed value of z is

z =
3.885− 4
0.1/

√
8
= −3.253.

The test is significant at 1% so that there is strong evidence to reject
H0. (In fact the test would also be significant at 0.1%.)

We can calculate the power of the test for any alternative value of µ.
If, for instance, µ = 3.9, then

1− β = P

(

X − 4
0.1/

√
8
< −2.326

∣

∣

∣

∣

∣

µ = 3.9

)
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= P

(

X − 3.9
0.1/

√
8
< −2.326 + 0.1

0.1/
√
8

∣

∣

∣

∣

∣

µ = 3.9

)

= P (Z < 0.502) = 0.692

Two-tailed test

Assume again that X ∼ N(µσ2) with σ assumed known but that we
now wish to test the null hypothesis H0 : µ = µ0 against the alternative
H1 : µ 6= µ0. The natural critical region to use is that consisting of
both large and small values of x or, equivalently, of z =

√
n(x−µ0)/σ.

In view of the symmetry of the distribution of Z, the critical region
takes the form |z| > c where, for a test of size α, c is defined by

α = P (|Z| > c|µ = µ0) = P (Z > c|µ = µ0)+P (Z < −c|µ = µ0) = 2[1−Φ(c)]

or 1− Φ(c) = α
2
.

Such a test is called a two-tailed test, as opposed to the one-tailed tests
described above, since the critical region is to be found in the two tails
of the distribution of Z. The commonly used values of α and c are
given in the following table:

α c
0.05 1.960
0.01 2.576
0.001 3.291

Example Milk bottles are vacuum-formed from molten gobs of glass that are
weighed as they fall into moulds. The weight is known to be normally
distributed with standard deviation 2.5 g and it is important that the
bottles mean weight is maintained st 2252; too low a mean results in
too many fragile bottles, too high a mean in an excess consumption of
glass as well as too many bottles having a low internal volume.

The hypotheses under test here are H0 : µ = 255 against H1 : µ 6= 255.
As the manufacturer does not want to stop production and check his
equipment unless there is strong evidence that the mean has changed,
he permits a probability of only 0.01 of making a Type I error.

The value of c is given by 1− Φ(c) = α
2
= 0.005 so that c = 2.576 and

the critical region is given by |z| > 2/576.
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A random sample of eight bottles has a mean weight of 253.25g. So

z =
x− µ0

σ√
n

=
253.25− 255
2.5/

√
8

= −1.980

and |z| does not fall in the critical region. There is therefore no evidence
to reject H0.

(Note that the test would just be significant with α = 0.05.)

Suppose the population mean weight of the bottles changes to 275g.
Then the power of the test is

1− β = P

(

X − 255
2.5/

√
8

> 2.576

∣

∣

∣

∣

∣

µ = 257

)

+ P

(

X − 255
2.5/

√
8

< −2.576
∣

∣

∣

∣

∣

µ = 257

)

= P

(

Z > 2.576− 2

2.5/
√
8

)

+ P

(

Z < −2.576− 2

2.5/
√
8

)

= 1− Φ(0.313) + Φ(−4.839)
= 0.377 + 0 = 0.377

Variance unknown

In practice, cases where the variance of X is known are uncommon.
Usually σ2 is not known. As a result, although

Z =
X − µ0

σ√
n

∼ N(0, 1)

remains true, it cannot be used to test hypotheses about µ as it depends
on σ. The natural way around this problem is to estimate σ2 by

S2 =

∑

(Xi −X)2

n− 1 .

There are several reasons for setting the divisor equal to n− 1 (rather
than, say, n), one of which is to ensure that E(S2) = σ2.

the use of S leads to a modified statistic defined by

T =
X − µ0

S√
n

.
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Under H0, T ∼ tn−1, i.e. T follows the (Student) t distribution with
n−1 degrees of freedom. One-tailed and two-tailed tests can be carried
out as before except that the critical region is given by t > c, t < −c
or |t| > c as appropriate, where the critical point c must be read from
the table of the t distribution rather than the standardised normal.

Example A particular task in a manufacturing industry has long been
scheduled to take 15 minutes on average. The management wants to in-
troduce a new way of doing the job that should prove more economical
in the tools required and cleaner for the workers involved. They want,
however, to keep the mean time unchanged so that the task still fits
perfectly into the production line schedule. Consequently, they mea-
sure the times for 12 completions of the task under the new conditions
and obtain the following results, in minutes.

13.6, 12.3, 16.3, 15.1, 13.8, 15.2, 14.5, 14.0, 13.3, 15.2, 16.1, 14.1.

We will assume that the time to complete the task is normally dis-
tributed and we want to test the null hypothesis H0 : µ = 15 against
the alternative H1 : µ 6= 15. Since n = 12, the critical region of a test
size α = 0.05 is given by

|t| = |x− 15|
s/
√
12

> 2/201.

Now
∑

xi = 173.5 and
∑

x2
i = 2523.63. Hencex =

173.5
12
= 14.4583̇ and

s2 = (2523.63−173.52/12)
11

= 15.1092
11

= 1.3736. The observed value of |T | is
therefore

|t| = |13.4583̇− 15|√

1.3736/12
= 1.601.

This does not fall in the critical region so there is no evidence to reject
H0.
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