
MA181 INTRODUCTION TO STATISTICAL MODELLING
NORMAL DISTRIBUTION

DIAGRAMS

Origins The normal distribution was discovered, in a discrete form, by de
Moivre in 1733 as an approximation to the binomial distribution. It
was later shown, in 1812, to be the limiting distribution of a sample
mean by Laplace. Meanwhile, in 1809, Gauss derived the normal as
the distribution of errors in astronomical observations.

Formulation Let Y be a random variable with the probability density func-
tion (pdf)
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Then Y is said to follow a normal (or Gaussian)distribution with pa-
rameters µ and σ2, the shorthand for which is Y ∼ N(µ, σ2). The
cumulative distribution function (cdf) of Y is
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Clearly, f(−∞) = 0, and it can be shown that F (∞) = 1.

Moments The moment generating function of Y is given by
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Consequently, E(Y ) = µ and E(Y 2) = σ2 + µ2 so that var(Y ) = σ2

and σ is the standard deviation of Y .

As the normal distribution is symmetric [f(µ − c) = f(µ + c) for all
c], all its odd central moments are zero. On the other hand, µ4 =
E(Y − µ)4] = 3σ4.
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Probabilities Whatever the values of µ and σ, the following properties hold:

µ ∓ σ contains 68.27% of the distribution, µ ∓ 1.960σ contains 95%,
µ∓ 2.576σ 99% and µmp3.291σ 99.9%.

Standardisation If Y ′ = a + bY , then Y ′ ∼ N(a + bµ, b2σ2). Hence. if
Z = (Y − µ)/σ, then Z ∼ N(0, 1), which is known as the standard

normal distribution and is the only one tabulated. The pdf of Z is
often denoted by φ(x) and the cdf by φ(z).
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