
MA181 INTRODUCTION TO STATISTICAL MODELLING
THE PROBABILITY GENERATING FUNCTION

Definition Suppose X is a discrete random variable that can take only
non-negative integer values, i.e.X has range R that is a subset of
{0, 1, 2, . . .}; X might be the number of piglets in a litter or the number
of letters you receive in the post today. In fact, the large majority of
discrete random variables met in practice have a range of this type. If
p(x) is the probability function ofX, consider the function G(s) defined
by

G(s) =
∑

x∈R

sxp(x) = E(sX), (1)

where the real variable s is a mathematical variable, as opposed to a
random one, and, in a context such as this, is described as a dummy

variable since it has no interpretation in terms of the problem being
discussed. In order to see the use to which G(s) might be put, consider
a single example.

Example 1 A builder has completed a small development of three houses,
and, from all the available evidence, the number X of then that he will
sell within six months has the distribution given by

x 0 1 2 3
p(x) 1

16
5
16

7
16

3
16

Since X is a discrete random variable with an appropriate range, the
function G(s), defined at (1), is given by

G(s) =
3
∑

x=0

sxp(x)

= (s0 + 5s1 + 7s2 + 3s3)/16

= (1 + s)2(1 + 3s)/16.

Thus G(s) can be expressed as a factorised polynomial in S. Since a
basic grounding in mathematics equips us to handle such expressions
with relative ease, we should not be surprised to learn that, within this
function, we have a convenient method for manipulating the distribu-
tion of X and deriving its properties.

Note that, for any distribution, G(1) = 1.
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Inversion of G(s) So much for the definition of G(s); suppose now we are
given a G(s) like, for instance, the one derived in Example 1. By
expanding this as a polynomial or power series in s, and picking out the
coefficients, we can reconstruct the probability function of X; the value
of p(x) is found as the coefficient of sx. For this reason, the function
G(s), defined at (1), is called the probability generating function (pgf)
of X.

Example 2 If G(s) = (4− 3s)−1 is the pgf of a random variable, what is its
distribution? Note that G(1) = 1. Expanding G(s) as a power series
in s, we obtain

G(s) =
1

4

[

1−
(

3s

4

)]−1

=
1

4

[

1 +
(

3s

4

)

+
(

3s

4

)2

+ . . .

]

,

all the coefficients of which lie in [0, 1]. Calling the random variable
X, we can find its probability function by extracting these coefficients.
The result can be summarised by the formula

p(x) =
1

4

(

3

4

)x

, x = 0, 1, 2, . . .

Moments Consider next the derivatives of G(s) with respect to s. The first
derivative is, from (1),

G′(s) =
∂G(s)

∂s
=
∑

x

sx−1xp(x).

Setting s = 1 in this expression leads to

G′(1) =
∑

x

xp(x) = E(X). (2)

Hence, if we know the pgf of a distribution, we can derive its mean by
the use of this result. Note carefully the meaning of G′(1): the pgf is
first differentiated with respect to s, and only after that is s set equal
to one.

Differentiating G(s) a second time leads to

G′′(s) =
∑

x

sx−2x(x− 1)p(x),
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so that, on putting s = 1, we find

G′′(1) =
∑

x

x(x− 1)p(x) = E[X(X − 1)].

This is the second factorial moment of W , denoted by µ[2];, from which
the variance of X can be readily derived by using

var(X) = E[X(X − 1)] + E(X)− [E(X)]2 = G′′(1) +G′(1)− [G′(1)]2.
(3)

Continuing this process, if we differentiate G(s) r times and then set
s = 1, we find

G(r)(1) = E[X(X − 1)(X − 2) . . . (X − r + 1)] = µ′[r],

which is the rth factorial moment of X. The rth moment of X about
the origin, or about its mean, can be derived by writing down a suitable
function of that moment in terms of the first r factorial moments, as
we have just seen for the variance. (Note that µ′[1] = E(X).)

Example 3 Let us return to example 1, where we found that

G(s) = (1 + s)2(1 + 3s)/16

Differentiating with respect to s yields

G′(s) = [3(1 + s)2 + 2(1 + s)(1 + 3s)]/16 = (1 + s)(5 + 9s)/16.

Hence, from (2), the expected number of houses the builder will sell is

E(X) = G′(1) =
7

4
.

Differentiating G(s) a second time leads to

G′′(s) = [9(1 + s) + (5 + 9s)]/16 = (7 + 9s)/; 16.

Hence G′′(s) = 2 and, using (3), the variance of X is found to be

var(X) = G′′(1) +G′(1)− [G′(1)]2 = 2 +
7

4
−
(

7

4

)2

=
11

16
.
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Linear functions of random variables Suppose GX(s) is the pgf of the
random variable X and we wish to know the pgf GY (s) of the linear
function Y = a+ bX. From (1), we have

GY (s) = E(sY ) = E(sa+bX = saE[(sb)X ] = saGX(s
b)

so that GY (s) can be found directly from GX(s).

Example 4 Let X follow the distribution of Example 2 and let Y = 5+3X.
The the pgf GY (s) of Y is given by

GY (s) = s5GX(s
3) =

1

4
s5

[

1−

(

3s3

4

)]

−1

=
1

4
s5

[

1 +
3

4
s3 +

(

3

4

)2

s6 + . . .

]

.

Extracting the coefficient of sy, we find

pY (y) =
1

4

(

3

4

)

(y−5)
3

, y = 5, 8, 11, . . .

Binomial distribution revisited Suppose the random variable Y follows
a binomial b)nπ) distribution with probability function

pY (y) =

(

n
y

)

πy(1− π)n−y, y = 0, 1, . . . , n.

The pgf of Y is given by

GY (s) =
N
∑

y=0

sypY (y) =
n
∑

y=0

(

n
y

)

(πs)y(1− π)n−y = [(1− π) + πs]n.

The mean and variance of Y can be found by differentiating this func-
tion. The first derivative with respect to s is

G′Y (s) = nπ[(1− π) + πs]n−1,

so that

E(Y ) = G′Y (1) = nπ.
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The second derivative of GY (s) is given by

G′′Y (s) = n(n− 1)π2[(1− π) + πs]n−2.

From (3), we therefore find the variance of Y to be

var(Y ) = G′′Y (1) +G′Y (1)− [G′Y (1)]
2

= n(n− 1)π2 + nπ − (nπ)2

= nπ(1− π).

By differentiating GY (s) twice more, we could go on to evaluate the
skewness and kurtosis of the distribution, although the calculations
become a little tedious.

Poisson distribution Under certain conditions, the binomial distribution
converges to a different distribution as a limiting form. We have seen
that the pgf of a binomial variate is

GY (s) = [(1− π) + πs]n.

Consider the limit as n→∞ and π → 0 in such a way as the product nπ
remains constant. In view of the restriction, there is only a single limit
at work here, and it is convenient, in this analysis, to set nπ = µ (nπ
is, after all, the mean of the binomial distribution), to write π = µ

n
,

and to consider the limit of GY (s) as n→∞. Then we have

lim
n→∞

GY (s) = lim
n→∞

[

1 + µ
(s− 1)

n

]n

= eµ(s−1). (4)

If Y is a random variable with this pgf, its probability function can be
found by expanding (4) as a power series in s. Since eµs = 1 + µs

1!
+

(µs)2

2!
+ . . ., this leads to

pY (y) =
e−µµy

y!
, y = 0, 1, 2, . . . , (5)

which is the probability function of the Poisson distribution, named af-
ter the French mathematician Siméon Denis Poisson (1781-1840). Note
that the range of Y is infinitely large as we have taken the limit as
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n → ∞. And, in view of the way the distribution has been derived,
it will be of no surprise to learn that it is particularly applicable in
situations where a large number (n) of items or individuals are ‘at risk
’, each with a small probability (π) of producing an event, the variate
Y measuring the total number of events over an interval of time or an
area of space. If, for example, Y is the number of particle emissions per
unit time from a piece of radioactive material, then n is not only very
large but also unknown, and, because π (also unknown) is extremely
small, the Poisson distribution fits data collected from such a source
very closely.

The mean and variance of Y can be found by using (2) and (3). Thus,
since

G′Y (s) = µeµ(s−1) and G′′Y (s) = µ2eµ(s−1),

we have that

E(Y ) = µ and var(Y ) = µ2 + µ− µ2 = µ.

These values can also be derived by taking the appropriate limits of
the mean and variance of the binomial distributions or, of course, from
the probability function (5), using the appropriate summations. Being
the mean value of Y, µ is a suitable symbol to use for the parameter
of the distribution.
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