MA181 INTRODUCTION TO STATISTICAL MODELLING BINOMIAL DISTRIBUTION

Bernoulli distribution Let X be a random variable with probability function

$$
p_{X}(x)= \begin{cases}\pi, & x=1 \\ 1-\pi, & x=0\end{cases}
$$

Then X follows a Bernoulli distribution.
Examples 1. The toss of a coin: $x=1$ if a head shows, $x=0$ if a tail.
2. The birth of a baby: $x=1$ if a girl, $x=0$ if a boy.
3. Testing items from a factory: $x=1$ if defective, $x=0$ if good.
4. Generally: $x=1$ is called success, $x=0$ failure.

If $X_{1}, X_{2}, \ldots, X_{n}(n \geq 2)$ are independent and identically distributed (iid) random variables following a Bernoulli distribution, then they constitute a sequence of Bernoulli trials.

Binomial distribution Let X_{1} and X_{2} be a sequence of two Bernoulli trials and let $Y=X_{1}+X_{2}$. What is $P(Y=y)$? Since Y can take only the three values 0,1 and 2 , we have

$$
\begin{gathered}
P(Y=0)=P\left(X_{1}=0 \text { and } X_{2}=0\right)=(1-\pi)^{2}, \\
P(Y=1)=P\left[\left(X_{1}=0 \text { and } X_{2}=1\right) \text { or }\left(X_{1}=1 \text { and } X_{2}=0\right)\right]=2 \pi(1-\pi), \\
P(Y=2)=P\left(X_{1}=1 \text { and } X_{2}=1\right)=\pi^{2} .
\end{gathered}
$$

Generally, let $Y=X_{1}+X_{2}+\ldots+X_{n}$. Then

$$
\begin{aligned}
& P(Y=0)=P\left(X_{1}=0, X_{2}=0, \ldots X_{n}=0\right)=(1-\pi)^{n}, \\
& P(Y=n)=P\left(X_{1}=1, X_{2}=1, \ldots, X_{n}=1\right)=\pi^{n} \text { and }
\end{aligned}
$$

$$
\begin{aligned}
P(Y=y)= & P[\text { a particular sequence of } y 1 \text { 's and }(n-y) 0 ' \mathrm{~s}] \times \\
& \text { Number of such sequences } \\
= & \binom{n}{y} \pi^{y}(1-\pi)^{n-y}, y=1,2, \ldots, n-1
\end{aligned}
$$

The random variable Y is said to follow a binomial distribution since the terms of its probability function derive from the binomial expansion of $[\pi+(1-\pi)]^{n}$. If 0 ! is set, by convention, to one, then the probability function of Y can be written as

$$
P_{Y}(y)=\binom{n}{y} \pi^{y}(1-\pi)^{n-y}, y=0,1, \ldots, n
$$

since this then gives the correct probabilities for the cases $y=0$ and $y=n$.

Notation If Y has this probability function, then we write $Y \sim b(n \pi)$.
Distribution function The cumulative distribution function $F_{Y}(y)=P(Y \leq$ y) is given by

$$
F_{Y}(y)=\sum_{r=0}^{y} p_{Y}(r)=\sum_{r=0}^{y}\binom{n}{r} \pi^{r}(1-\pi)^{r}
$$

which cannot be simplified further.
Example The probability that a child is born with an inherited disease (cystic fibrosis), given that both parents are normal carriers of the associated gene, is $\frac{1}{4}$. If Y is the number of affected children in a family of six children, then $Y \sim b\left(6, \frac{1}{4}\right)$. Hence, the probability if two affected children is given by

$$
P_{Y}(2)=\binom{6}{2}=\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{4}=15 \times \frac{3^{4}}{4^{6}}=0.2966
$$

Further,

$$
\begin{aligned}
P(Y \leq 2) & =p_{Y}(0)+p_{y}(1)+p_{Y}(2) \\
& =\binom{6}{0}\left(\frac{1}{4}\right)^{0}\left(\frac{3}{4}\right)^{6}+\binom{6}{1}\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{5}+\binom{6}{2}\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{4} \\
& =0.1780+0.3560+0.2966=0.8306 .
\end{aligned}
$$

Tables (i) If $Y \sim b(10,0.45)$, then $P(Y \leq 3)=0.2660$,
(ii) If $Y \sim b(16,0.32)$, then $P(Y=6)=P(Y \leq 6)=P(Y \leq 5)=$ $0.7743=0.5926=0.1817$,
(iii) If $Y \sim b(13,0.18)$, then $P(\geq 4)=1-P(Y \leq 3)=1-0.8061=$ 0.1939 ,
(iv) If $T \sim b(17,0.403)$, then, by linear interpolation, $P(Y \leq 5)=$ $0.2639+0.3(0.2372-0.2639)=0.2639-0.0080=0.2559$.
Properties 1. $\sum_{y=0}^{n}\binom{n}{y} \pi^{y}(1-\pi)^{n-y}=[\pi+(1-\pi)]^{n}=1$,
2. Let $Y^{\prime}=n-Y$, where $Y \sim b(n \pi)$. Then

$$
\begin{aligned}
P\left(Y^{\prime}=y^{\prime}\right) & =P\left(n-Y=y^{\prime}\right)=P\left(Y=n-y^{\prime}\right) \\
& =\binom{n}{n-y^{\prime}} \pi^{n-y^{\prime}}(1-\pi)^{y^{\prime}} \\
& =\binom{n}{y^{\prime}}(1-\pi)^{y^{\prime}} \pi^{n-y^{\prime}}, y^{\prime}=0,1, \ldots, n .
\end{aligned}
$$

So $Y^{\prime} \sim b(n, 1-\pi)$.
This result is often useful if $\pi>\frac{1}{2}$, for which tables are not generally available, since $p_{Y}(y)=p_{Y^{\prime}}(n-y)$ and $P(Y \leq y)=P\left(Y^{\prime} \geq\right.$ $n-y$), where the success probability for the distribution of Y^{\prime} is $1-\pi$.
3. Suppose $\pi=\frac{1}{2}$. Then

$$
P_{Y}(y)=\binom{n}{y}\left(\frac{1}{2}\right)^{n}=\binom{n}{n-y}\left(\frac{1}{2}\right)^{n}=p_{Y}(n-y)
$$

for all values of Y. Hence the distribution is symmetric.
Tables (continued) (v) If $Y \sim b(14,0.68)$, then $P(Y \leq 9)=P\left(Y^{\prime} \geq\right.$ $5)=1-P\left(Y^{\prime} \leq 4\right)$, where $Y^{\prime} \sim b(19,0.32)$. So $P(Y \leq 9)=$ $1-0.5187=0.4813$.

Estimation Suppose a sequence of n Bernoulli trials yields y successes. Then the natural, and in many respects the best, estimate of π, the success probability, is the observed proportion of successes $\frac{y}{n}$.

Example (Multiple observations) The table below gives, in its second columns, the frequency distribution of the number Y of peas found in the pod of a four-seeded line of pea. A total of 269 pods were inspected.

Peas per pod y	observed frequency of pods	$\hat{p}_{Y}(y)$	Expected frequency of pods
0	16	0.0399	10.74
1	45	0.1976	53.15
2	100	0.3666	98.62
3	82	0.3023	81.33
4	26	0.0935	25.15
Total	269	0.9999	268.99

We will assume that $Y \sim b(4 \pi)$ and estimate π by the average proportion of successes per pod, i.e. by

$$
\hat{\pi}=\frac{16\left(\frac{0}{4}\right)+45\left(\frac{1}{4}\right)+82\left(\frac{3}{4}\right)+26\left(\frac{4}{4}\right)}{269}=0.5530 .
$$

Substituting the value into the probability function of Y yields the estimated probability function given by

$$
\hat{p}_{Y}(y)=\binom{4}{y}(0.5530)^{y}(0.4470)^{4-y}, y=0,1,2,3,4 .
$$

The values of this function are shown in the third columns of the table. multiplying them by 269 gives the expected frequencies, for $y=0,1,2,3,4$, which may be compared with the observed frequencies to determine how good a fit the binomial distribution is to the data. These values are shown in the last column of the table.

