
MA120 INTRODUCTION TO PROBABILITY THEORY AND
STATISTICS

EXPECTED VALUES

Suppose N observation of a random variable consist of n0 zeroes, n1 ones, n2

twos,. . . . Then the sample mean, or average, x can be written as

x =
0n0 + 1n1 + 2n2 + . . .

N

= 0
(

n0

N

)

+ 1
(

n1

N

)

+ 2
(

n2

N

)

+ . . .

= 0p0 + 1p1 + 2p2 + . . . =
∑

x

xpx

where px =
nx

N
, the observed proportion of x’s.

Now let N →∞. Then px>(x) for all x, so that

x −→N→∞

∑

x

xp(x).

Example 1 The number of complaints received by a shop in a day follows
the distribution with the probability function
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Hence

E(X) =
∑

x

xp(x) = 0
(

2

20

)

+1
(

4

20

)

+2
(

7

20

)

+. . .+5
(

1

20

)

=
43

20
= 2.15.

Example 2 - Bernoulli distribution SupposeX follows the Bernoulli dis-
tribution with probability function

pX(x) =

{

π, x = 1,
1− π, x− 0.

Then

E(X) = 1(π) + 0(1− π) = π.
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Example 3 - Binomial distribution If X1, X2, . . . , Xn is a sequence of
Bernoulli trials and Y = X1 + X2 + . . . Xn, then Y follows a bino-
mial distribution with probability function

pY (y) =

(

n

y

)

πy(1− π)n−y, y = 0, 1, . . . , n.

Consequently,

E(Y ) =
n
∑

y=0

y

(

n

y

)

πy(1− π)n−y

=
n
∑

y=1

y

(

n

y

)

πy(1− π)n−y

= n
n
∑

y=1

(

n− 1
y − 1

)

πy(1− π)n−y

= nπ
n′

∑

y′=0

(

n′

y′

)

πy
′

(1− π)n
′
−y′

, where y′ = y − 1 and n′ = n− 1,

= nπ.

Expected value of h(X) Suppose X is a random variable whose distribu-
tion we know but that we wish to know the expected value of h(X), an
arbitrary function of X. It would seem that we need to first to derive
the distribution of Y = h(X) and then find E(Y ). However, this is not
necessary. It can be proved that

E(Y ) = E[h(X)] =
∑

x

h(x)pX(x).

As a result of the above, we have

E(aX + b) =
∑

x

(ax+ b)p(x) = a
∑

x

xp(x) + b
∑

x

p(x) = aE(X) + b,

where a and b are constants, and generally

E[ah(X) + b] = aE[h(X)] + b and E

[

k
∑

i=1

aihi(X)

]

=
k
∑

i=1

aiE[hi(X)]
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for arbitrary functions hi(X), i = 1, 2, . . . , k and constants ai, i =
1, 2, . . . , k.

In example 3, we therefore have E
(

Y
n

)

= π.

Moments Let

µ′r = E(Xr).

Then µ′r is called the rth moment ofX (about the origin). In particular,
µ′1 = E(X) is the mean of X and is usually denoted by µ. It is the
most important measure of location of a distribution.

Now let

µr = E[(X − µ)r].

Then µ1 is called the rth moment of X about the mean, or the rth
central moment of X. Note that µ1 = 0. When r = 2, we have

µ2 = E[(X − µ)2] = var(X),

the variance of X, which is often denoted by σ2, and is a measure of

spread of a distribution. Further, σ =
√

var(X) = sd(X) is called the
standard deviation of X and is also a measure of spread but with the
same dimension as X itself.

It is sometimes easier to calculate variance using the relation

var(X) = E[(X − µ)2] = E(X2)− µ2.

For some distributions, however, the easiest second moment to calculate
is S[X(X − 1)] (known as the second factorial moment), from which
we may obtain

var(X) = E[X(X − 1)] + µ− µ2.

Example 1 For the number of complaints received by the shop,

E(X2) = 02
(

2

20

)

+ 12
(

4

20

)

+ 22
(

7

20

)

+ . . .+ 52
(

1

20

)

=
125

20
=

25

4
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so that

var(X) =
25

4
−
(

43

20

)2

=
651

400
= 1.6275 and

sd(X) =
√
1.6275 = 1.276

Example 3 Here Y ∼ b(n, π) so that

E[Y (Y − 1)] =
n
∑

y=0

y(y − 1)

(

n

y

)

πy(1− π)n−y

= n(n− 1)
n
∑

y=2

(

n− 2
y − 2

)

πy(1− π)n−y = n(n− 1)π2.

Hence

var(Y ) = n(n− 1)π2 + nπ − (nπ)2 = nπ(1− π).

Example 2 When in example 3, we have

var(X) = π(1− π)

for the Bernoulli distribution.

Note that, in general,

var(aX + b) = E{(aX + b)− [aE(X) + b]}2

= E{a[X − E(X)]}2 = a2var(X).

So, in example 3, var
(

Y
n

)

=
(

1
n

)

var(Y ) = π(1−π)
n

.

Higher moments The third central moment of X, µ3 = E[(X−µ)3], or its
standardised form

µ3

µ
3

2

2

, is often considered to give a measure of skewness

of a distribution. A symmetric distribution has µ3 = 0. If µ3 > 0, the
distribution is said to be positively skewed and, if µ3 < 0, negatively
skewed. Note however that, for a distribution to be symmetric, it is
necessary for all its odd central moments to be zero.
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The fourth central moments ofX, µ4 = E[(X−µ)4], or its standardised
form

µ4

µ2
2

, is sometimes considered to give a measure of kurtosis (from

the Greek for Bulging) or peakedness of a distribution. The standard,
or normal, value is taken to be 3.
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