Question

This question concerns the frequently-traded derivative product known as a "Perpetual American Put".
(a) Define the terms PERPETUAL, AMERICAN and PUT.
(b) Explain why, for a Perpetual American Put, the Black-Scholes equation reduces to

$$
\frac{1}{2} \sigma^{2} S^{2} V_{S S}+r S V_{S}-r V=0
$$

where σ denotes volatility, r denotes interest rate, S denotes the asset value and V denotes the value of the option.
(c) Given a simple arbitrage argument to show that the option value can never be less than the early-exercise price and thus

$$
V \geq \max (E-S, 0)
$$

Explain why V must also satisfy $V \rightarrow 0$ as $S \rightarrow \infty$.
(d) Denote the optimal exercise price (i.e. the price which should automatically trigger exercise) by S^{*}. Explain why
(i) $V\left(S^{*}\right)=E-S^{*}$
(ii) $\partial V / \partial S^{*}=0$

Hence or otherwise, show that the value of the option is given by

$$
V(S)=\left(\frac{E}{1+\frac{\sigma^{2}}{2 r}}\right)^{1+2 r / \sigma^{2}} \frac{\sigma^{2}}{2 r} S^{-2 r / \sigma^{2}}
$$

Answer

(a)

PERPETUAL:- The option has no expiry and 'goes on forever'.
AMERICAN:- The option may be exercised at any time of the holder's choosing.

PUT:- The payoff at exercise is determined by $\max (E-S, 0)$
(b) The standard Black-Scholes equation is

$$
V_{t}+\frac{1}{2} \sigma^{2} S^{2} V_{S S}+r S V_{S}-r V=0
$$

but if the option is perpetual then by definition it cannot have a value that depends on time. Thus $V_{t}=0$ and Black-Scholes becomes

$$
\frac{1}{2} \sigma^{2} S^{2} V_{S S}+r S V_{S}-r V=0
$$

(c) Suppose it were that case that $V<\max (\mathrm{E}-\mathrm{S}, 0)$.

Then buy the option (cost V) and exercise straight away (receiving $E-S$). Then the payoff will be

$$
-V+(E-S)=(E-S)-V>0
$$

which is a risk free profit.
Thus $V \geq \max (\mathrm{E}-\mathrm{S}, 0)$.
Also, the option is a put, and so profits if the share price reduces. If $S \rightarrow \infty$ therefore the option value must become zero.
(d) If the situation $S=S^{*}$ ensures that we exercise the option, then when this happens the value of the option must be the payoff.
Thus $V\left(S^{*}\right)=E_{S}^{*}$.
Also, The OPTIMAL EXERCISE PRICE must, by definition, be optimal and thus maximize the option value. So regarded as a function of S and S^{*}, at optimal conditions

$$
\frac{\partial V}{\partial S^{*}}\left(S, S^{*}\right)=0
$$

Now we must solve

$$
\frac{1}{2} \sigma^{2} S^{2} V_{S S}+r S V_{S}-r V=0
$$

subject to

$$
\begin{aligned}
V \rightarrow 0 & \text { as } S \rightarrow \infty \\
V\left(S^{*}\right) & =E-S^{*} \\
\frac{\partial V}{\partial S^{*}} & =0
\end{aligned}
$$

To solve the ODE (Euler's equation), try

$$
V \propto S^{n}
$$

(n to be determined)

$$
\begin{aligned}
\frac{1}{2} \sigma^{2} n(n-1)+r n-r & =0 \\
\Rightarrow n & =1, \quad n=-2 r / \sigma^{2}
\end{aligned}
$$

Thus $V=A S+B S^{-2 r / \sigma^{2}}$, (A,B arbitrary constants).
Now we need $V \rightarrow 0$ as $S \rightarrow \infty \Rightarrow A=0$.
Also, since $V\left(S^{*}\right)=E_{S}^{*}$

$$
\begin{aligned}
B\left(S^{*}\right)^{-2 r / \sigma^{2}} & =E-S^{*} \\
\Rightarrow B & =\left(S^{*}\right)^{2 r / \sigma^{2}}\left(E-S^{*}\right)
\end{aligned}
$$

Thus

$$
V=\left(E-S^{*}\right)\left(S^{*}\right)^{2 r / \sigma^{2}} S^{-2 r / \sigma^{2}}
$$

Now

$$
\begin{aligned}
\frac{\partial V}{\partial S^{*}}=-\left(\frac{S^{*}}{S}\right)^{\frac{2 r}{\sigma^{2}}} & +\left(E-S^{*}\right) \frac{2 r}{\sigma^{2}}\left(\frac{S^{*}}{S}\right)^{\frac{2 r}{\sigma^{2}}} \frac{1}{S^{*}} \\
\Rightarrow S^{*} & =\left(E-S_{\frac{2 r}{\sigma^{2}}}^{*}\right. \\
& =\frac{2 E r}{\sigma^{2}\left(1+\frac{2 r}{\sigma^{2}}\right)} \\
& =\frac{2 E r}{\sigma^{2}+2 r}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow V & =\left(\frac{2 E r}{\sigma^{2}+2 r}\right)^{\frac{2 r}{\sigma^{2}}} S^{-\frac{2 r}{\sigma^{2}}}\left(E-\frac{2 E r}{\sigma^{2}+2 r}\right) \\
& =\left(\frac{E}{1+\frac{\sigma^{2}}{2 r}}\right)^{\frac{2 r}{\sigma^{2}}+1} S^{-\frac{2 r}{\sigma^{2}}} E\left(\frac{\sigma^{2}}{\sigma^{2}+2 r}\right) \\
& =\left(\frac{E}{1+\frac{\sigma^{2}}{2 r}}\right)^{\frac{2 r}{\sigma^{2}}} S^{-\frac{2 r}{\sigma^{2}}} \frac{E \sigma^{2}}{2 r}\left(\frac{2 r}{\sigma^{2}+2 r}\right) \\
& =\left(\frac{E}{1+\frac{\sigma^{2}}{2 r}}\right)^{\frac{2 r}{\sigma^{2}}+1} \frac{\sigma^{2}}{2 r} S^{-\frac{2 r}{\sigma^{2}}}
\end{aligned}
$$

