## Question

In this question YOU MAY ASSUME that the value $V$ of a European Vanilla Call is given by

$$
V-S N\left(d_{1}\right)-E e^{-r(T-t)} N\left(d_{2}\right)
$$

where

$$
\begin{aligned}
d_{1} & =\frac{\log (S / E)+\left(r+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}, \\
d_{2} & =\frac{\log (S / E)+\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}, \\
N(p) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{p} e^{-q^{2} / 2} d q
\end{aligned}
$$

and $S, E, t, T, \sigma$ and $r$ denote respectively the asset price, the strike price, the time, the expiry, the volatility and the interest rate.
(a) Show that

$$
\frac{\partial}{\partial S}\left(N\left(d_{1}\right)\right)=\frac{1}{\sqrt{2 \pi(T-t)}} \frac{e^{-d_{1}^{2} / 2}}{\sigma S}
$$

and calculate

$$
\frac{\partial}{\partial S}\left(N\left(d_{2}\right)\right)
$$

Hence show that the DELTA, defined by $\Delta_{c}=\partial V / \partial S$ for a European Vanilla Call is given by

$$
\Delta_{c}=N\left(d_{1}\right)
$$

What does the delta of an option measure?
Denote the value of a call by $C$ and the value of a put by $P$. By considering a portfolio which is long one asset, long one put and short on call, show that

$$
C-P=S-E e^{-r(T-t)}
$$

and hence show that the delta $\Delta_{p}$ for a European Vanilla Put is

$$
\Delta_{p}=N\left(d_{1}\right)-1
$$

Give a financial reason why $\Delta_{p}<\Delta_{c}$.

## Answer

(a) As advised, we assume that for a Euro Vanilla Call

$$
V=S N\left(d_{1}\right)-E e^{-r(T-t)} N\left(d_{2}\right) .
$$

Now

$$
\frac{\partial}{\partial S}\left(N\left(d_{1}\right)\right)=N_{d_{1}} d_{1 S}
$$

But

$$
\begin{aligned}
& N\left(d_{1}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{d_{1}} e^{-q^{2} / 2} d q \\
& \quad \Rightarrow N_{d_{1}}=\frac{1}{\sqrt{2 \pi}} e^{-d_{1}^{2} / 2} \\
& \text { also } d_{1} \mathrm{~S}=\frac{1}{\sigma S \sqrt{T-t}} .
\end{aligned}
$$

Thus $\left(N\left(d_{1}\right)\right)_{S}=\frac{e^{-d_{1}^{2} / 2}}{(\sigma S \sqrt{2 \pi(T-t)})}$
Similarly

$$
\begin{aligned}
\left(N\left(d_{2}\right)\right)_{S} & =N_{d_{2}} d_{2} S \\
& =\frac{1}{\sqrt{2 \pi}} e^{-d_{2}^{2} / 2} \times \frac{1}{\sigma S \sqrt{t-t}}
\end{aligned}
$$

So now

$$
\begin{aligned}
\Delta_{c} & =\frac{\partial V}{\partial S}=N\left(d_{1}\right)+\frac{e^{-d_{1}^{2} / 2}}{\sigma \sqrt{2 \pi(T-t)}}-\frac{E e^{-r(T-t)} e^{-d_{2}^{2} / 2}}{S \sigma \sqrt{2 \pi(T-t)}} \\
& =N\left(d_{1}\right)+\frac{1}{\sigma \sqrt{2 \pi(T-t)}}\left[e^{-d_{1}^{2} / 2}-e^{-\log (S / E)-r(T-t)-d_{2}^{2} / 2}\right]
\end{aligned}
$$

Now $d_{1}-d_{2}=\frac{\sigma^{2}(T-t)}{\sigma \sqrt{T-t}}=\sigma \sqrt{T-t}$

$$
\begin{aligned}
& \Rightarrow d_{1}^{2}=d_{2}^{2}+\sigma^{2}(T-t)+2 d_{2} \sigma \sqrt{T-t} \\
& \Rightarrow \Delta=N\left(d_{1}\right)+\frac{e^{-d_{2}^{2} / 2}}{\sigma \sqrt{2 \pi(T-t)}}\left[e^{-\frac{\sigma^{2}}{2}(T-t)-d_{2} \sigma \sqrt{T-t}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-e^{-\log (S / E)-r(T-t)}\right] \\
= & N\left(d_{1}\right) \\
& +\frac{e^{-d_{2}^{2} / 2}}{\sigma \sqrt{2 \pi(T-t)}}\left[e^{-\frac{\sigma^{2}}{2}(T-t)-\log (S / E)-r(T-t)+\frac{\sigma^{2}}{2}(T-t)}\right. \\
& \left.-e^{-\log (S / E)-r(T-t)}\right] \\
= & N\left(d_{1}\right)
\end{aligned}
$$

The delta of an option measures the sensitivity of the option value to changes in the underlying and of course is the key hedging quantity.
(b) Now consider a portfolio $\Pi=S+P-C$. The payoff at expiry is

$$
\rho=S+\max (\mathrm{E}-\mathrm{S}, 0)-\max (\mathrm{S}-\mathrm{E}, 0)
$$

There are two cases:-
(i) $S \geq E \Rightarrow \rho=S+0-(S-E) \Rightarrow \rho=E$
(ii) $S / l e E \Rightarrow \rho=S+E-S-0 \Rightarrow \rho=E$

So arbitrage

$$
\Rightarrow \Pi=E e^{-r(T-t)}
$$

$\Rightarrow$ Put/Call Parity $S+P-C=E e^{-r(T-t)}$
i.e.

$$
C-P=S-E e^{-r(T-t)}
$$

Thus $\Delta_{c}=\frac{\partial C}{\partial S}$, but $\frac{\partial C}{\partial S}-\frac{\partial P}{\partial S}=1-0$, (from above).

$$
\begin{aligned}
\Rightarrow \Delta_{P} & =\Delta_{C}-1 \\
\text { i.e. } \Delta_{\mathrm{P}} & \left.=N) d_{1}\right)-1
\end{aligned}
$$

The delta of a Put is less as a Call has an unlimited upside.

