
Question

(a) An up-and-out barrier Put option is identical to a European Vanilla
Put, save for the fact that if any time during the life of the option
the asset price exceeds the barrier B, the option instantly becomes
(and remains) worthless. Assuming that the underlying asset pays no
dividends, explain briefly why the fair price V of the option must satisfy
the boundary value problem

Vt +
1

2
σ2S2VSS + rSVS − rV = 0, (S < B),

V (B, t) = 0, V (S, T ) = max(E − S, 0), (S < B).

(Here as usual the asset value, strike price, volatility and interest rate
are denoted by S, E, σ and r respectively.)

(b) Assume now that for a particular up-and-out Put B¿E. Show that if
U(S,t) satisfies the Black-Scholes equation and V is defined by

U(S, t) = SnV (η, t),
(

η =
K

S

)

whereK is an arbitrary constant, then V also satisfies the Black-Scholes
equation provided n takes a specific value (which you should deter-
mine).

Hence or otherwise show that the fair value of and up-and-out barrier
Put is given by

V = PBS(S, t)−
(

S

B

)1−2r/σ2

PBS(B
2/S, t)

where PBS denotes the value of a European Vanilla Put.

1



Answer

(a) An up-and-out barrier option is just like a normal Put until the barrier
is reached, and so satisfies Black-Scholes.

⇒ Vt +
1

2
σ2S2VSS + rSVS − rV = 0 (S < B)

As soon as S = B it is worthless

⇒ V (B, t) = 0

(as this must apply instantaneously and for all time.)

Provided S < B the payoff is just that for a Euro Vanilla Put and thus

V (S, T ) = max(E− S, 0).

(b) Now U(S, t) = SnV (η, t), (η = K/S)

⇒ Ut = SnVt

US = nSn−1V −KSn−2Vη = nSn−1V − ηSn−1Vη

USS = n(n− 1)Sn−2V − nSn−2ηVη − (n− 2)Sn−2ηVη

+η2Sn−2Vηη

Now U satisfies Black-Scholes so

Ut +
1

2
σ2S2USS + rSUS − rU = 0

⇒ SnVt +
1

2
σ2S2

[

n(n− 1)Sn−2V − nSn−2ηVη
]

−(n− 2)ηSn−2Vη + η2Sn−2Vηη
]

+rS
[

nSn−1V − ηSn−1Vη
]

− rSnV

= 0

Thence

Vt +
1

2
σ2

[

(n2 − n)V − nηVη − η(n− 2)Vη + η2Vηη
]

+rn[V ]− rηVη − rV = 0

2



so that

Vt +
1

2
σ2η2Vηη + Veta

[

−
1

2
σ2nη − rη − η(n− 2)

1

2
σ2

]

+V

[

σ2

2
(N2 − n) + r(n− 1)

]

= 0

⇒

Vt +
1

2
σ2η2Vηη + ηVη

[

−r − σ2[n− 1]
]

+(n− 1)
[

r +
1

2
nσ2

]

V = 0

To get Black-Scholes out of this we need

−r − σ2(n− 1) = r

⇒ n = 1−
2r

σ2

But then

(n− 1)
[

r +
1

2
nσ2

]

= −
2r

σ2

[

r +
1

2
σ2

(

1−
2r

σ2

)]

= −r

Thus with n = 1− 2r/σ2, V satisfies the Black-Scholes equation

Vt +
1

2
σ2η2Vηη + rηVη − rV = 0.

Since Black-Scholes is linear we may add solution. So consider a solu-
tion of the form

V = PBS(S, t) + ASnPBS(K/S, t)

where A is a constant and n is chosen as above.

We have:-

(i) This satisfies Black-Scholes ∀A, ∀K

(ii) We need V (B, t) = 0. Thus

0 = PBS(B, t) + ABnPBS(K/B, t).

Clearly this condition holds if we set K = B2 and A = −B−n
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Thus

V = PBS(S, t)−
(

S

B

)n

PBS(B
2/S, t), (n = 1− 2r/σ2)

Finally we must check the payoff.

At expiry

V (S, T ) = PBS(S, T )−
(

S

B

)n

PBS(B
2/S, T )

= max(E− S, 0)− 0

since if E < B the second term is max(E −B2/S, 0) = 0.
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