QUESTION

(a) Fine the vector equation and standard equation of the following planes:
(i) The plane Π_{1} which passes through the point $P=(1,2,3)$ and has the normal vector $\mathbf{n}=2 \mathbf{i}-1 \mathbf{j}+3 \mathbf{k}$;
(ii) The plane Π_{2} which passes through the three points $P_{1}=(8,8,-1), P_{2}=$ $(2,0,-8), P_{3}=(14,30,4)$;
(iii) The plane Π_{3} which passes through the point $Q=(5,0,-8)$ and is parallel to the plane with equation $6 x-3 y+9 z=11$.
(iv) Are any of the planes $\Pi_{1}, \Pi_{2}, \Pi_{3}$ parallel? Are any of them equal?
(b) Let $\mathbf{a}=2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}-\mathbf{j}$.
(i) Find the relation that must hold between x_{1}, x_{2} and x_{3} if the vector $\mathbf{x}=x_{1} \mathbf{i}+x_{2} \mathbf{j}+x_{3} \mathbf{k}$ is to be written as $\mathbf{x}=s \mathbf{a}+t \mathbf{b}$ where s and t are scalars.
(ii) Show that the vector $\mathbf{c}=2 \mathbf{i}+8 \mathbf{j}-3 \mathbf{k}$ can be written as $\mathbf{c}=s \mathbf{a}+t \mathbf{b}$.
(iii) Fins s and t in this case.

ANSWER

(a) (i)

$$
\begin{gathered}
\mathbf{v}\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=9 \\
2 x-y+3 z=9
\end{gathered}
$$

(ii) $\mathbf{u}=\overrightarrow{P_{2} P_{1}}=6 \mathbf{i}+8 \mathbf{j}+7 \mathbf{k}$

$$
\mathbf{v}={p_{2} P_{3}}^{2}=12 \mathbf{i}+30 \mathbf{j}+12 \mathbf{k}
$$

$$
\begin{aligned}
\mathbf{n}=\mathbf{u} \times \mathbf{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
6 & 8 & 7 \\
12 & 30 & 12
\end{array}\right| \\
& =\left|\begin{array}{cc}
8 & 7 \\
30 & 12
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
6 & 7 \\
12 & 12
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
6 & 8 \\
12 & 30
\end{array}\right| \mathbf{k} \\
& =(96-210) \mathbf{i}-(72-84) \mathbf{j}+(-180-96) \mathbf{k} \\
& =-114 \mathbf{i}+12 \mathbf{j}+84 \mathbf{k}
\end{aligned}
$$

This can be scaled to $-19 \mathbf{i}+12 \mathbf{j}+84 \mathbf{k}$

$$
\begin{aligned}
\text { w.n }=O \vec{P}_{2} \cdot \mathbf{n} & =\left(\begin{array}{c}
2 \\
0 \\
-8
\end{array}\right) \cdot\left(\begin{array}{c}
-114 \\
12 \\
84
\end{array}\right) \\
& =-228-672=900 \\
-114 x+12 y+84 z & =900
\end{aligned}
$$

(iii) u.n $=\left(\begin{array}{c}5 \\ 0 \\ -8\end{array}\right) \cdot \mathbf{n}$ where $\mathbf{n}=6 \mathbf{i}-3 \mathbf{j}+9 \mathbf{k}$

$$
6 x-3 y+9 z=-42
$$

(iv) To check for parallelism check normals: First and third are parallel. Since equations are inconsistent they are distinct.
(b) (i) $\mathrm{x} \cdot(\mathbf{a} \times \mathbf{b})=0$

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 2 & -1 \\
2 & -1 & 0
\end{array}\right|=-\mathbf{i}-2 \mathbf{j}-6 \mathbf{k}
$$

so $x_{1}+2 x_{2}+6 x_{3}=0$
(ii) $\mathbf{c} .(\mathbf{a} \times \mathbf{b})=-2-16+2+18=0$
(iii) $\mathbf{c} \times \mathbf{a}=-t(\mathbf{a} \times \mathbf{b})$ and $\mathbf{c} \times \mathbf{b}=s(\mathbf{a} \times \mathbf{b})$

$$
\mathbf{c} \times \mathbf{a}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{j} \\
2 & 8 & -3 \\
2 & 2 & -1
\end{array}\right|=-2 \mathbf{i}-4 \mathbf{j}-12 \mathbf{k}
$$

so $t=-2$

$$
\mathbf{c} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 8 & -3 \\
2 & -1 & 0
\end{array}\right|=-3 \mathbf{i}-6 \mathbf{j}-18 \mathbf{k}
$$

so $s=3$

