QUESTION

(a) Sketch the regiondefined by the inequalities:

$$
0 \leq x \leq \pi, 0 \leq y \leq 2 \pi, 0 \leq z \leq \frac{\pi}{2}
$$

(b) If the region is occupied by a solid S with density at any point (x, y, z) given by the formula $3 x^{2} y \sin z$, compute the total mass of the region S by eveluating an appropriate triple integral.
(c) The region S is divided by the plane $y=a x$ (where a is a constant $0<a<2)$ into two regions: the region S_{1} contains the point ($\pi, 0,0$) and the region S_{2} contains the point $(0,2 \pi, 0)$. Sketch the two regions S_{1} and S_{2}, and find the mass of S_{1} in terms of a.
(d) Using your answers to parts (b) and (c), find the mass of the upper part s_{2}, again in terms of a, and find the value of a for which the two regions have equal mass.

ANSWER

(a)
(b)

$$
\begin{aligned}
\int_{0}^{\pi} 3 x^{2} d x \int_{0}^{2 \pi} y d y \int_{0}^{\frac{\pi}{2}} \sin z d z & =\left[x^{3}\right]_{0}^{\pi}\left[\frac{y^{2}}{2}\right]_{0}^{2 \pi}[-\cos z]_{0}^{\frac{\pi}{2}} \\
& =\pi^{3} \frac{4 \pi^{2}}{2}=2 \pi^{5}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Mass} S_{1} & =\int_{0}^{\frac{\pi}{2}} \int_{x=0}^{\pi} \int_{y=0}^{a x} 3 x^{2} y \sin z d y d x d z \\
& =\int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi}\left[3 x^{2} \sin z \frac{y^{2}}{2}\right]_{0}^{a x} d x d z \\
& =\int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi} \frac{3 a^{2}}{2} x^{4} \sin z d x d z \\
& =\int_{0}^{\frac{\pi}{2}}\left[\frac{3 a^{2}}{2} \frac{x^{5}}{5} \sin z\right]_{0}^{\pi} d z \\
& =\int_{0}^{\frac{\pi}{2}} \frac{3}{10} a^{2} \pi^{5} \sin z d z \\
& =\left[\frac{3}{10} a^{2} \pi^{5}(-\cos z)\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{3}{10} a^{2} \pi^{5}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\operatorname{mass} S_{2} & =\operatorname{mass} S-\operatorname{mass} S_{1} \\
& =2 \pi^{5}-\frac{3}{10} a^{2} \pi^{5}=\left(\frac{20-3 a^{2}}{10}\right) \pi
\end{aligned}
$$

Mass $S_{1}=$ Mass $S_{2} \Leftrightarrow \frac{3}{10} a^{2}=\frac{20-3 a^{2}}{10} \Leftrightarrow 6 a^{2}=20 \Leftrightarrow a^{2}=\frac{10}{3} \Leftrightarrow a=\sqrt{\frac{10}{3}}$

