QUESTION

A pair of unbiased coins is tossed repeatedly until 2 heads are obtained. What is the probability that it will happen on the r-th toss? What is the probability that it will take more then two tosses? Find the mean and variance of the number of tosses.

ANSWER

$p(2$ heads with pair of unbiased coins $)=\frac{1}{4}$.
Hence the number of trials, r, has a geometric distribution
$p(r)=\left(\frac{3}{4}\right)^{r-1} \frac{1}{4}$
$p($ more than 2 tosses $)=p($ first and second tosses fail $)=\left(\frac{3}{4}\right)^{2}=\frac{9}{16}$

$$
\begin{gathered}
\sum_{r=1}^{\infty} p^{r}=\frac{p}{1-p} \text { differentiating } \\
\sum_{r=1}^{\infty} r p^{r-1}=\frac{1}{(1-p)^{2}} \\
\sum_{r=2}^{\infty} r(r-1) p^{r-2}=\frac{2}{(1-p)^{3}} \\
\mu=\sum_{r=1}^{\infty} \frac{r}{4}\left(\frac{3}{4}\right)^{r-1} \\
=\frac{\frac{1}{4}}{\left(1-\frac{3}{4}\right)^{2}}=4 \\
\sigma^{2}=\sum_{r=1}^{\infty} \frac{r(r-1)}{4}\left(\frac{3}{4}\right)^{r-1}+\sum_{r=1}^{\infty} \frac{r}{4}\left(\frac{3}{4}\right)^{r-1}-\mu^{2} \\
=\frac{1}{4} \times \frac{2 \times \frac{3}{4}}{\left(1-\frac{3}{4}\right)^{3}}+4-16 \\
= \\
24+4-16=12
\end{gathered}
$$

