QUESTION

Large batches of components are delivered to two factories A and B. Each batch is subjected to an acceptance sampling scheme as follows:
Factory A : Accept the batch if a random sample of 10 components contains less than 2 defectives. Otherwise reject the batch.
Factory B :Take a random sample of 5 components. Accept the batch if this sample contains no defectives. Reject the batch if this sample contains 2 or more defectives. If the sample contains 1 defective, take a further sample of 5 and accept the batch if this sample contains no defectives.
If the fraction defective in the batch is p, find the probabilities of accepting a batch under each scheme.
Write down an expression for the average number sampled in factory B and find its maximum value.

ANSWER
$n=10, p=$ proportion defective.
A : accept if less than 2 defectives. $P($ accept $)=q^{10}=10 q^{9} p=(1-p)^{9}(1+9 p)$

$P($ accept $)=(1-p)^{5}+5 p(1-p)^{9}$
Expected number sampled $=5+5 \times 5 p(1-p)^{4}=E$
$\frac{\partial E}{\partial p}=-25 p(1-p)^{3} \times 4+25(1-p)^{4}=0$ when $4 p=1-p \quad p=0.2$
$E=5+5 \times 0.8^{4}=7.048$ (check $\frac{\partial^{2} E}{\partial p^{2}} \leq 0$ when $p=0.2$).

