QUESTION

In a sweepstake there are N tickets $(N>5)$, and five prizes are to be won. The prizes are allocated by drawing five tickets from a hat one after the other. Each winning ticket is replaced in the hat before the next ticket is drawn, so that a ticket may win more than one prize. The number of prizes won by a competitor who has brought two tickets is a random variable R. State the value of $E(R)$ and show that $\operatorname{var}(R)=\frac{10(N-2)}{N^{2}}$.
The rules are changed so that winning tickets are no longer replaced. The number of prizes won by a competitor with two tickets is S.
Find $P(S=0), P(S=1), P(S=2)$.
Show that $E(S)=E(R)$ and $\operatorname{var}(S)=\frac{(N-5) \operatorname{var}(R)}{(N-1)}$.
ANSWER
If he buys two tickets, probability of winning on each draw is $\frac{2}{N} . R \sim B\left(5, \frac{2}{N}\right)$ since the tickets are replaced.
$\mu=5 \times \frac{2}{N}=\frac{10}{N}, \sigma^{2}=5 \times \frac{2}{N}\left(1-\frac{2}{N}\right)=\frac{10(N-2)}{N^{2}}$ Without replacement the distribution is hypergeometric.

$$
\begin{aligned}
P(S=0) & =\frac{\binom{N-2}{5}\binom{2}{0}}{\binom{N}{5}} \\
& =\frac{(N-2)(N-3)(N-4)(N-5)(N-6)}{N(N-1)(N-2)(N-3)(N-4)} \\
& =\frac{(N-5)(N-6)}{N(N-1)} \\
P(S=1) & =\frac{\binom{N-2}{4}\binom{2}{1}}{\binom{N}{5}} \\
& =\frac{(N-2)(N-3)(N-4)(N-5) \times 2 \times 5}{4!N(N-1)(N-2)(N-3)(N-4)} \\
& =\frac{10(N-5)}{N(N-1)}
\end{aligned}
$$

$$
\begin{aligned}
P(S=2) & =\frac{\binom{N-2}{3}\binom{2}{2}}{\binom{N}{5}} \\
& =\frac{(N-2)(N-3)(N-4) 5!)}{3!N(N-1)(N-2)(N-3)(N-4)} \\
& =\frac{20}{N(N-1)}
\end{aligned}
$$

Check that these add to give 1 .

$$
E(S)=\frac{10(N-5)}{N(N-1)}+\frac{40}{N(N-1)}=\frac{10}{N}
$$

$$
\begin{aligned}
\operatorname{Var}(S) & =\frac{10(N-5)}{N(N-1)}+\frac{80}{N(n-1)}-\frac{100}{N^{2}} \\
& =\frac{10\left(N^{2}-7 N+10\right)}{N^{2}(N-1)} \\
& =\frac{10(N-2)(N-5)}{N^{2}(N-1)} \\
& =\frac{(N-5)}{(N-1)} \operatorname{Var}(R)
\end{aligned}
$$

