QUESTION

An electrical shop replenishes its supply of a specialized type of bulb at the beginning of each week. The demand in a week for this type of bulb has a Poisson distribution with mean 3.
Find the smallest number of bulbs which should be in stock at the beginning of the week to be at least 90% confident of satisfying the demand in a week. If the number in stock at the beginning of the week is set at that number find the expected number of satisfied demands in the week.

ANSWER

Demand $\sim P(3)$. We can use either $p(x)=\frac{\mathrm{e}^{-3} 3^{x}}{x!}$ or tables to find $F(x)$.

$$
\begin{array}{ll}
p(0)=.050 & F(0)=.050 \\
p(1)=.149 & F(1)=.199 \\
p(2)=.224 & F(2)=.423 \\
p(3)=.224 & F(3)=.647 \\
P(4)=.168 & F(4)=.815 \\
& F(5)=.916
\end{array}
$$

(Note that there are two modes, 2 and 3.)
Hence the least number to be at least 90% certain is 5 . So stock 5 . If the demand is $0,1,2,3,4$ then the satisfied demand is $0,1,2,3,4$. If the demand is ≥ 5 then the satisfied demand is 5 .
E (satisfied demand)
$=0 p(0)+1 p(1)+2 p(2)+3 p(3)+4 p(4)+5(p(5)+p(6)+\ldots)$
$=0 p(0)+1 p(1)+2 p(2)+3 p(3)+4 p(4)+5(1-p(4))$
$=.149+.448+.672+.672+5 \times .185=2.866$

