Exam Question

Topic: Volume of Revolution

Let R denote the region in the first quadrant of the $x-y$ plane bounded by the x-axis, the y-axis, and the curve $y=1-x^{2}$.
(i) Find the volume of the solid obtained by rotating R around the line $x=3$.
(ii) Find the total surface area of the solid obtained by rotating R around the y-axis.

Solution

$$
\begin{aligned}
& \text { (i) } \begin{aligned}
V & =2 \pi \int_{0}^{1}(3-x)\left(1-x^{2}\right) d x=2 \pi \int_{0}^{1}\left(3-x-3 x^{2}+x^{3}\right) d x \\
= & 2 \pi\left(3-\frac{1}{2}-1+\frac{1}{4}\right)=\frac{7 \pi}{2} \\
\text { (ii) } S & =2 \pi \int_{0}^{1} x \sqrt{1+4 x^{2}} d x+\pi \\
& =2 \pi\left[\frac{1}{12}\left(1+4 x^{2}\right)^{3 / 2}\right]_{0}^{1}+\pi=\frac{\pi}{6}\left(5^{3 / 2}-1\right)+\pi \\
& =\frac{\pi}{6}\left(5^{3 / 2}+5\right)=\frac{5 \pi}{6}(\sqrt{5}+1)
\end{aligned}
\end{aligned}
$$

