Question

Write down an explicit Möbius transformation taking the circle $\{z \in \mathbf{C}|\mid z-$ $2 \mid=3\}$ to the circle $\{z \in \mathbf{C} \mid \operatorname{Re}(z)+\operatorname{Im}(z)=1\}$.

Answer

Take 3 points on $A=\{|z-2|=3\}$, say $z_{1}=2+3 i, z_{2}=-1, z_{3}=5$, and 3 points on $B=\{\operatorname{Re}(\mathrm{z})+\operatorname{Im}(\mathrm{z})=1\}$, say $w_{1}=1, w_{2}=i$, and $w_{3}=-2+3 i$. Now find $m \in$ Möb $^{+}$with $m\left(z_{k}\right)=w_{k}, \quad k=1,2,3$. Start by finding $n(z)$ with $n(2+3 i)=0, n(-1)=\infty$ and $n(5)=1$, and $p(z)$ with $P(1)=0, p(i)=\infty$ and $p(-2+3 i)=1$ and then set $m=p^{-1} \cdot n$.

$$
\begin{gathered}
n(z)=\frac{z-(2+3 i)}{z+1} \cdot \frac{6}{5-(2+3 i)} \\
=\frac{6}{3-3 i} \cdot \frac{z-(2+3 i)}{z+1} \\
=\frac{6 z-6(2+3 i)}{(3-3 i) z+(3-3 i)} \\
p(z)=\frac{z-1}{z-i} \cdot \frac{-2+3 i-i}{-2+3 i-1} \\
=\frac{z-1}{z-i} \cdot \frac{-2+2 i}{-3+3 i} \\
=\frac{2(z-1)}{3(z-i)}=\frac{2 z-2}{3 z-3 i} \\
p^{-1}(z)=\frac{-3 i z+2}{-3 z+2} \\
m(z)= \\
=\frac{p^{-1}(n(z))}{-3 i n(z)+2} \\
=
\end{gathered} \begin{gathered}
\frac{-3 i(6 z-6(2+3 i))+2((3-3 i) z+(3-3 i))}{-3(6 z-6(2+3 i))+2((3-3 i) z+(3-3 i))} \\
=
\end{gathered}
$$

(There are many others.)

