
Question

In the proof that the group of Möbius transformations acts transitively on the
set of circles in C, we use the fact that three distinct points in C determine
a circle in C.

Prove this fact in a single special case: determine the center and radius of
the circle determined by 2 + i, 3− i, and −7i.

Answer

The circle in C determined by 2+ i, 3− i,−7i (first note that these 3 points
do not lie on a line in C, sine the line through 2 + i and 3− i intersects the
imaginary axis at 5i 6= −7i).
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• The midpoint of the line segment through 2+i and −7i is
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These perpendiculars are both diameters of the desired circle and hence in-
tersect at the center:
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So, the center of the circle is −2−
9

4
i = a.

Its radius is:
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