QUESTION

Use the Fourier transform to solve the heat equation

$$
f_{t}=f_{x x}, t>0,-\infty<x<\infty
$$

given that

$$
f(x, 0)=e^{-\frac{x^{2}}{2}}, f, f_{x} \rightarrow 0 \text { as } x \rightarrow \pm \infty
$$

ANSWER
$f_{t}=f_{x x}, t>0,-\infty<x<\infty, f(x, 0)=e^{-\frac{x^{2}}{2}}, f, f_{x} \rightarrow 0$ as $|x| \rightarrow 0$.
Fourier transform with respect to x :
$F_{t}=-k^{2} F$
$F(t, k)=F(0, k) e^{-k^{2} t}$
$F(0, k)=e^{-\frac{k^{2}}{2}}$
$F(t, k)=e^{-\frac{k^{2}(1+2 t)}{2}}$
Inverse Fourier transform
$f(t, x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\frac{k^{2}(1+2 t)}{2}+i k x} d k$
Change of variable
$\bar{k}=\sqrt{1+2 t} k$ and $\bar{x}=\frac{x}{\sqrt{1+2 t}}$

$$
\begin{aligned}
f(t, x) & =\frac{1}{2 \pi} \frac{1}{\sqrt{1+2 t}} \int_{-\infty}^{\infty} e^{-\frac{\bar{k}^{2}}{2}+i \bar{k} \bar{x}} d \bar{k} \\
& =\frac{1}{\sqrt{1+2 t}} e^{-\frac{\bar{x}^{2}}{2}} \text { by the result we have used before } \\
& =\frac{1}{\sqrt{1+2 t}} e^{-\frac{x^{2}}{2(1+2 t)}}
\end{aligned}
$$

