Question

A pdf is defined by

$$
f(x, y)= \begin{cases}C y^{2} & \text { if } 0 \leq x \leq 2 \text { and } 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of C.
(b) Find $P(X+Y>2), P\left(Y<\frac{1}{2}\right), P(X \leq 1), P(X=3 Y)$.
(c) Are X and Y independent?
(d) Are the events $\{X<1\}$ and $\left\{Y \geq \frac{1}{2}\right\}$ independent?

Answer

(a) $f(x, y)=C y^{2}, \quad 0 \leq x \leq 2$.

$$
\int_{0}^{2} \int_{0}^{1} y^{2} d y d x=\left.\int_{0}^{2} d x \frac{y^{3}}{3}\right|_{0} ^{1}=\frac{2}{3} \Rightarrow C=\frac{3}{2}
$$

(b) $f_{X}(x)=\frac{1}{2}, \quad 0<x<2$
$f_{Y}(y)=3 y^{2}, \quad 0<y<1$
X and Y are independent.

$$
\begin{aligned}
P(X+Y>2) & =\frac{3}{2} \int_{1}^{2} d x \int_{2-x}^{1} y^{2} d y \\
& =\left.\frac{3}{2} \int_{1}^{2} d x \frac{y^{2}}{3}\right|_{2-x} ^{1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{1}^{2}\left\{1-(2-x)^{3}\right\} d x \\
& =\frac{3}{8}
\end{aligned}
$$

$P\left\{Y<\frac{1}{2}\right\}=\int_{0}^{\frac{1}{2}} 3 y^{2} d y=\frac{1}{8}$
$P\{X \leq 1\}=\int_{0}^{1} \frac{1}{2} d x=\frac{1}{2}$
$P(X=3 Y)=0$ because the distribution of X and Y is continuous.
(c) $P\left(X \leq 1, Y \geq \frac{1}{2}\right)=\frac{3}{2} \int_{0}^{1} d x \int_{\frac{1}{2}}^{1} y^{2} d y=\frac{7}{16}$
$P(X \leq 1) \cdot P\left(Y \geq \frac{1}{2}\right)=\frac{1}{2} \cdot \frac{7}{8}=\frac{7}{16}$
Hence the events are independent.
(d) Also follows from the general result that: if X and Y are independent then

$$
P\{X \in A, Y \in B\}=P(X \in A, Y \in B)
$$

