Question

Suppose that X and Y have the joint pdf

$$
f(x, y)= \begin{cases}e^{-(x+y)} & \text { if } x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

By using a suitable transformation, show that the pdf of $U=\frac{(X+Y)}{2}$ is given by

$$
f_{U}(u)=4 u e^{-2 u}, u>0 .
$$

Answer
Let $Z=\frac{X_{1}+X_{2}}{2}$ and $W=X_{2}$
$\Rightarrow x_{1}=2 z+w ; \quad x_{2}=w$
$\Rightarrow 0<x_{1}<\infty ; \quad 0<2 z-w<\infty$
$\left|\begin{array}{ll}\frac{\partial x_{1}}{\partial z} & \frac{\partial x_{1}}{\partial w} \\ \frac{\partial w w_{2}}{\partial z} & \frac{\partial x_{2}}{\partial w}\end{array}\right|=\left|\begin{array}{rr}2 & -1 \\ 0 & 1\end{array}\right|=2$
Therefore the joint pdf of (Z, W) is
$f_{Z, W}(z, w)=e^{-2 z} .2, \quad 0<2 z-w<\infty$
Therefore $f_{Z}(z)=2 \int_{0}^{2 z} e^{-2 z} d w=4 z e^{-2 z}, \quad z>0$

