## Question

Suppose that $X$ and $Y$ are independent standard normal random variables.
(a) Prove that $Z=a X+b Y$ is normally distributed where $a$ and $b$ are given constants such that both are not equal to zero at the same time. Give the mean and variance of $Z$.
(b) Find $P(X-Y>0)$ and $P(X-Y>1)$.
(c) Derive the distribution of $Z=X^{2}+Y^{2}$. Hence find $P\left(X^{2}+Y^{2} \leq 1\right)$.

## Answer

(a) $M_{X}(t)=E\left(e^{t X}\right)=e^{\frac{t^{2}}{2}}$

$$
\begin{aligned}
M_{Y}(t)=E\left(e^{t Y}\right) & =e^{\frac{t^{2}}{2}} \\
& \begin{aligned}
M_{Z}(t) & =E\left(e^{t Z}\right) \\
& =E\left\{e^{t(a X+b Y)}\right\} \\
& =E\left(e^{a t X} e^{b t Y}\right) \\
& =M_{X}(a t) M_{Y}(b t) \text { since } X \text { and } Y \text { are independent } \\
& =e^{\frac{1}{2}\left(a^{2}+b^{2}\right) t^{2}}
\end{aligned}
\end{aligned}
$$

The above is the mgf of a normal r.v. with mean 0 and variance $a^{2}+b^{2}$.
By using the uniqueness theorem of the mgf $Z \sim N\left(0, a^{2}+b^{2}\right)$.
(b) $Z=X-Y \sim N(0,2)$

$$
\begin{aligned}
& P(Z>0)=\frac{1}{2} \\
& P(Z>0)=1-\Phi\left(\frac{1}{\sqrt{2}}\right)=1-0.76=0.24
\end{aligned}
$$

(c) $Z=X^{2}+Y^{2} \sim \chi^{2}$ with 2 degrees of freedom by using the mgf technique

$$
\begin{gathered}
P(Z \leq 1)=\int_{0}^{1} f(z) d z=\int_{0}^{1} \frac{1}{\Gamma\left(\frac{2}{2}\right) 2^{\frac{2}{2}}} z^{\frac{2}{2}-1} e^{-\frac{1}{2} z} d z \\
=\int_{0}^{1} \frac{1}{2} e^{-\frac{1}{2} z} d z=1-e^{-\frac{1}{2}} \\
\star M_{Z}(t)=E\left(e^{t X^{2}+t Y^{2}}\right)=\left(\frac{1}{1-2 t}\right)^{\frac{2}{2}} \text { if } t<\frac{1}{2}
\end{gathered}
$$

