Question

a) Find the Mobius transformation

$$
w=\frac{a z+b}{c z+d}
$$

which maps the disc $|z|<1$ onto the disc $|w-1|<1$, and which maps the points $z=0, z=1$ onto the points $w=\frac{1}{2}, w=0$ respectively.
b) Find the real and imaginary parts of the function $\cos z$, where $z=x+i y$.

Find the images of the lines $x=$ constant under the transformation $w=\cos z$, and use this to show that the transformation maps the infinite strip

$$
0<x<\pi, \quad y>0
$$

onto the lower half-plane $\operatorname{im} w<0$.

Answer

a)

The transformation must map the boundaries of the discs onto one another. Inverse pairs map to inverse pairs of points, so
$z=0 \rightarrow w=\frac{1}{2} \Rightarrow z=\infty \rightarrow w=-1$
Thus $\frac{b}{d}=\frac{1}{2}$ and $\frac{a}{c}=-1$.
Now $z=1 \rightarrow w=0 \Rightarrow a+b=0$
So we have $b=-a, c=-a, d=-2 a$.
Hence $w=\frac{z-1}{-z-2}$
b) $\cos (x+i y)=\cos x \cos i y-\sin x \sin i y=\cos x \cosh y-i \sin x \sinh y$

So $u=\cos x \cosh y$ and $v=-\sin x \sinh y$
For each $x=$ constant this gives parametric equations for hyperbolae.
Now consider $0<x<\pi$.
For $x=\frac{\pi}{2} \quad \cos x=0 \quad \sin x=1$
So $u=0, \quad v=-\sinh y<0$ for $y>0$
So $x=\frac{\pi}{2} y<0$ maps to the negative imaginary axis $u=0, v<0$.
For $0<x<\frac{\pi}{2} \quad \cos x>0$ and $\sin x>0$.
For $y>0 \cosh y>0$ and $\sinh y>0$.
So lines $x=$ constant and $y>0$ in this range map to hperbolas in the fourth quadrant.
Similarly for $\frac{\pi}{2}<x<\pi$ the images are parts of hyperbolas in the third quadrant.
DIAGRAMS

