Question

- a) State Liouville's Theorem, and use it to prove the Fundamental Theorem of Algebra.
- b) Locate the zeros and singularities of the function

$$\frac{(z^2-4)\cos\left(\frac{1}{z}\right)}{z^2+z-6}$$

Classify the singularities, and determine the behaviour of the function at infinity.

Answer

a) Liouville's Theorem states that if f(z) is analytic for all z, and is bounded then f(z) is constant.

Let $P(z) = z^n + a_1 z^{n-1} + \cdots + a_{n-1} z + a_n$ $n \ge 1$ be a polynomial (with complex coefficients). Suppose $P(z) \ne 0$, for all $z \in \mathbb{C}$.

Let $f(z) = \frac{1}{P(z)}$, and so f(z) is analytic for all $z \in \mathbb{C}$.

Now $\frac{P(z)}{z^n} \to 1$ as $|z| \to \infty$. Thus $\exists R, \ |z| > R \Rightarrow |f(z)| < 1$. Now since f(z) is continuous, it is bounded in $|z| \le R$. Thus f(z) is bounded and so constant. So $f(z) \equiv f(0) = \frac{1}{P(o)} \ne 0$.

This contradicts $f(z) \to 0$ as $|z| \to \infty$. Hence P(z) must have a zero.

b)
$$f(z) = \frac{(z+2)(z-2)\cos(\frac{1}{z})}{(z-2)(z+3)}$$

So we have

- i) a removable singularity at z = 2.
- ii) a simple pole at z = -3.
- iii) an essential singularity at z = 0.
- iv) a zero at z = -2.
- v) zeros where $\frac{1}{z} = (2n+1)\frac{\pi}{2}$, $n \in \mathbf{Z}$

$$f\left(\frac{1}{z}\right) = \frac{\left(\frac{1}{z} + 2\right)\left(\frac{1}{z} - 2\right)\cos z}{\left(\frac{1}{z} - 2\right)\left(\frac{1}{z} + 3\right)} \to 1 \text{ as } z \to 0$$

Hence f is analytic at infinity.