Question

a) State Liouville's Theorem, and use it to prove the Fundamental Theorem of Algebra.
b) Locate the zeros and singularities of the function

$$
\frac{\left(z^{2}-4\right) \cos \left(\frac{1}{z}\right)}{z^{2}+z-6}
$$

Classify the singularities, and determine the behaviour of the function at infinity.

Answer

a) Liouville's Theorem states that if $f(z)$ is analytic for all z, and is bounded then $f(z)$ is constant.
Let $P(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n} \quad n \geq 1$ be a polynomial (with complex coefficients). Suppose $P(z) \neq 0$, for all $z \in \mathbf{C}$.
Let $f(z)=\frac{1}{P(z)}$, and so $f(z)$ is analytic for all $z \in \mathbf{C}$.
Now $\frac{P(z)}{z^{n}} \rightarrow 1$ as $|z| \rightarrow \infty$. Thus $\exists R,|z|>R \Rightarrow|f(z)|<1$. Now since $f(z)$ is continuous, it is bounded in $|z| \leq R$. Thus $f(z)$ is bounded and so constant. So $f(z) \equiv f(0)=\frac{1}{P(o)} \neq 0$.
This contradicts $f(z) \rightarrow 0$ as $|z| \rightarrow \infty$. Hence $P(z)$ must have a zero.
b) $f(z)=\frac{(z+2)(z-2) \cos \left(\frac{1}{z}\right)}{(z-2)(z+3)}$

So we have
i) a removable singularity at $z=2$.
ii) a simple pole at $z=-3$.
iii) an essential singularity at $z=0$.
iv) a zero at $z=-2$.
v) zeros where $\frac{1}{z}=(2 n+1) \frac{\pi}{2}, \quad n \in \mathbf{Z}$

$$
f\left(\frac{1}{z}\right)=\frac{\left(\frac{1}{z}+2\right)\left(\frac{1}{z}-2\right) \cos z}{\left(\frac{1}{z}-2\right)\left(\frac{1}{z}+3\right)} \rightarrow 1 \text { as } z \rightarrow 0
$$

Hence f is analytic at infinity.

