Question

Show that the element of arc-length $\frac{c}{\operatorname{Im}(z)}|\mathrm{dz}|$ on \mathbf{H} is invariant under $B(z)=$ $-\bar{z}$.

Answer
Let $f:[a, b] \longrightarrow \mathbf{H}, f(t)=x(t)+i y(t)$ be a piecewise differentiable path. Then,

$$
\operatorname{length}(\mathrm{f})=\int_{\mathrm{f}} \frac{\mathrm{c}}{\operatorname{Im}(\mathrm{z})}|\mathrm{dz}|
$$

$B \circ f(t)=-\overline{f(t)}=-x(t)+i y(t)$. Thus, $\operatorname{Im}(B \circ f(t))=\operatorname{Im}(\mathrm{f}(\mathrm{t}))$ and $\left|(B \circ f)^{\prime}(t)\right|=\left|f^{\prime}(t)\right|$, and so

$$
\begin{aligned}
\operatorname{length}(\mathrm{B} \circ \mathrm{f}) & =\int_{B \circ f} \frac{c}{\operatorname{Im}(\mathrm{z})}|d z| \\
& =\int_{a}^{b} \frac{c}{\operatorname{Im}(\mathrm{~B} \circ \mathrm{f}(\mathrm{t}))}\left|(B \circ f)^{\prime}(t)\right| d t \\
& =\int_{a}^{b} \frac{c}{\operatorname{Im}(\mathrm{f}(\mathrm{t}))}\left|f^{\prime}(t)\right| d t \\
& =\text { length(f) as desired. }
\end{aligned}
$$

