Question

Consider the element of arc-length $\frac{1}{2+5|z|}|\mathrm{dz}|$ on \mathbf{C}. Calculate the circumference, with respect to this element of arc-length, of the Euclidean circle with center 0 and radius $r>0$.

Further, write down the integral for the length, with respect to this element of arc-length, of the square with vertices at $\pm r \pm r i$ for $r>0$. Evaluate it if you can.

Answer
C_{r} the circle with center 0 and radius r. Parametrize C_{r} by $f(t)=r e^{i t} 0 \leq$ $t \leq t \pi$.
Then,

$$
\begin{aligned}
f^{\prime}(t) & =\int_{f} \frac{|d z|}{2+5|z|} \\
& =\int_{0}^{2 \pi} \frac{\left|f^{\prime}(t)\right| d t}{2+5|f(t)|} \\
& =\int_{0}^{2 \pi} \frac{r d t}{2+5 r}=\frac{2 \pi r}{2+5 r}
\end{aligned}
$$

Parametrize the side of the square S_{r} from $r-r i$ to $r+r i$ by $f(t)=r+$ $t i,-r \leq t \leq r$.
Then, $f^{\prime}(t)=i$ and so

$$
\begin{aligned}
\text { length }\left(S_{\mathrm{r}}\right) & =4 \text { length(side) } \\
& =4 \int_{f} \frac{|d z|}{2+5|z|} \\
& =4 \int_{-r}^{r} \frac{\left|f^{\prime}(t)\right| d t}{2+5|f(t)|} \\
& =4 \int_{-r}^{r} \frac{d t}{2+5 \sqrt{r^{2}+t^{2}}}
\end{aligned}
$$

(The fact that $\frac{1}{2+5|z|}|d z|$ is invariant by notations of \mathbf{C} fixing 0 is what allows us to say that the length of the square is 4 times the length of one side.)
(I don't know how to evaluate this integral and I haven't yet found it in a table.)

