Exam Question

Topic: TripleIntegral

A sphere S whose equation is $x^{2}+y^{2}+z^{2}=a^{2}$ has density which is proportional to the square of the distance from the plane $z+a=0$, i.e. the plane which is tangent at the "south pole". Find the total mass of the sphere.

Solution

The density is given by $\rho(x, y, z)=k(a+z)^{2}$. The mass is given by

$$
M=\iiint_{S} k\left(a+z^{2}\right) d V=\iiint_{S} a^{2} d V+2 k a \iiint_{S} z d V+k \iiint_{S} z^{2} d V
$$

Now $\iiint_{S} z d V=0$ by symmetry.
Also $\iiint_{S} a^{2} d V=a^{2} \cdot \frac{4}{3} \pi a^{3}=\frac{4}{3} a^{5}$.
Finally we have, using spherical polar coordinates,

$$
\begin{aligned}
\iiint_{S} z^{2} d V & =\int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \int_{0}^{a}(r \cos \theta)^{2} \cdot r^{2} \sin \theta d r \\
& =2 \pi \int_{0}^{\pi} \sin \theta \cos ^{2} \theta d \theta \int_{0}^{a} r^{4} d r \\
& =2 \pi\left[\frac{\cos ^{3} \theta}{3}\right]_{0}^{\pi} \cdot \frac{a^{5}}{5}=\frac{4}{15} \pi a^{5} .
\end{aligned}
$$

