Exam Question

Topic: TripleIntegral

A solid circular cylinder has radius 2 , and the distance between its circular ends is 6 . The density at a point P of the cylinder is proportional to the product of the square of the distance of P from the axis of the cylinder and the distance of P from the nearest circular end of the cylinder; Find the total mass, and the average density of the cylinder.

Solution In cylindrical polars

$$
\begin{aligned}
M & =2 k \int_{0}^{2 \pi} d \phi \int_{0}^{3} d z \int_{0}^{2} r^{2} z \cdot r d r=4 \pi k \int_{0}^{3} z d z \int_{0}^{2} r^{3} d r \\
& =4 \pi k \frac{9}{2} \frac{16}{4}=72 \pi k .
\end{aligned}
$$

the volume of the cylinder is $\pi \cdot 2^{2} \cdot 6=24 \pi$.
So the average density is $\frac{72 \pi k}{24 \pi}=3 k$.

