Question

Determine whether the following improper integrals converge or diverge, and evaluate those which converge.

1. $\int_{0}^{4} \mathrm{~d} x / x^{3 / 2}$;
2. $\int_{1}^{\infty} \mathrm{d} x /(x+1)$;
3. $\int_{5}^{\infty} \mathrm{d} x /(x-1)^{3 / 2}$;
4. $\int_{0}^{9} \mathrm{~d} x /(9-x)^{3 / 2}$;
5. $\int_{-\infty}^{-2} \mathrm{~d} x /(x+1)^{3}$;
6. $\int_{-1}^{8} \mathrm{~d} x / x^{1 / 3}$;
7. $\int_{2}^{\infty} \mathrm{d} x /(x-1)^{1 / 3}$;
8. $\int_{-\infty}^{\infty} x \mathrm{~d} x /\left(x^{2}+4\right)$;
9. $\int_{0}^{1} e^{\sqrt{x}} \mathrm{~d} x / \sqrt{x}$;
10. $\int_{1}^{\infty} \mathrm{d} x / x \ln (x)$;

Answer

1. this is an improper integral because $1 / x^{3 / 2}$ is continuous on $(0,4]$ and $\lim _{x \rightarrow 0+} 1 / x^{3 / 2}=\infty$. So, we evaluate:

$$
\begin{aligned}
\int_{0}^{4} \frac{1}{x^{3 / 2}} \mathrm{~d} x & =\lim _{c \rightarrow 0+} \int_{c}^{4} \frac{1}{x^{3 / 2}} \mathrm{~d} x \\
& =\lim _{c \rightarrow 0+} \int_{c}^{4} x^{-3 / 2} \mathrm{~d} x \\
& =\lim _{c \rightarrow 0+}\left(-\frac{2}{\sqrt{4}}+\frac{2}{\sqrt{c}}\right) \\
& =-1+2 \lim _{c \rightarrow 0+} \frac{1}{\sqrt{c}}=\infty
\end{aligned}
$$

and so this improper integral diverges.
2. this is an improper integral because the interval of integration is $[1, \infty)$, which is not a closed interval. So, we evaluate:

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x+1} \mathrm{~d} x & =\lim _{M \rightarrow \infty} \int_{1}^{M} \frac{1}{x+1} \mathrm{~d} x \\
& =\lim _{M \rightarrow \infty}\left[\ln (M+1)-\ln \left(\frac{1}{2}\right)\right]=\infty
\end{aligned}
$$

and so this improper integral diverges.
3. this is an improper integral, as the interval of integration is $[5, \infty)$, which is not a closed interval. So, we evaluate:

$$
\begin{aligned}
\int_{5}^{\infty} \frac{1}{(x-1)^{3 / 2}} \mathrm{~d} x & =\lim _{M \rightarrow \infty} \int_{5}^{M} \frac{1}{(x-1)^{3 / 2}} \mathrm{~d} x \\
& =\lim _{M \rightarrow \infty} \int_{5}^{M}(x-1)^{-3 / 2} \mathrm{~d} x \\
& =\lim _{M \rightarrow \infty}\left[-\frac{2}{\sqrt{M-1}}+1\right]=1
\end{aligned}
$$

and so this improper integral converges to 1.
4. this is an improper integral because $1 /(9-x)^{3 / 2}$ is continuous on $[0,9)$ and $\lim _{x \rightarrow 9-} 1 /(9-x)^{3 / 2}=\infty$. So, we evaluate:

$$
\begin{aligned}
\int_{0}^{9} \frac{1}{(9-x)^{3 / 2}} \mathrm{~d} x & =\lim _{c \rightarrow 9-} \int_{0}^{c} \frac{1}{(9-x)^{3 / 2}} \mathrm{~d} x \\
& =\lim _{c \rightarrow 9-} \int_{0}^{c}(9-x)^{-3 / 2} \mathrm{~d} x \\
& =\lim _{c \rightarrow 9-}\left[-\frac{2}{3}+\frac{2}{\sqrt{9-c}}\right]=\infty
\end{aligned}
$$

and so this improper integral diverges.
5. this is an improper integral, since the interval of integration is $(-\infty,-2]$ and so is not a closed interval. So, we evaluate:

$$
\begin{aligned}
\int_{-\infty}^{-2} \frac{1}{(x+1)^{3}} \mathrm{~d} x & =\lim _{M \rightarrow-\infty} \int_{M}^{-2} \frac{1}{(x+1)^{3}} \mathrm{~d} x \\
& =\lim _{M \rightarrow-\infty}\left[-\frac{1}{2} \frac{1}{(-2+1)^{2}}+\frac{1}{2} \frac{1}{(M+1)^{2}}\right]=-\frac{1}{2}
\end{aligned}
$$

and so this improper integral converges to $-\frac{1}{2}$.
6. this is an improper integral, since the integrand is not continuous on $[-1,8]$ as it has a discontinuity at 0 . Hence, we can break it up as the sum of two improper integrals:

$$
\int_{-1}^{8} \mathrm{~d} x / x^{1 / 3}=\int_{-1}^{0} \mathrm{~d} x / x^{1 / 3}+\int_{0}^{8} \mathrm{~d} x / x^{1 / 3}
$$

and we have that $\int_{-1}^{8} \mathrm{~d} x / x^{1 / 3}$ converges if both $\int_{-1}^{0} \mathrm{~d} x / x^{1 / 3}$ and $\int_{0}^{8} \mathrm{~d} x / x^{1 / 3}$ converge. So, we evaluate:

$$
\int_{-1}^{0} \frac{1}{x^{1 / 3}} \mathrm{~d} x=\lim _{c \rightarrow 0-} \int_{-1}^{c} \frac{1}{x^{1 / 3}} \mathrm{~d} x
$$

$$
\begin{aligned}
& =\lim _{c \rightarrow 0-} \int_{-1}^{c} x^{-1 / 3} \mathrm{~d} x \\
& =\lim _{c \rightarrow 0-}\left[\frac{3}{2} c^{2 / 3}-\frac{3}{2}\right]=-\frac{3}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{8} \frac{1}{x^{1 / 3}} \mathrm{~d} x & =\lim _{c \rightarrow 0+} \int_{c}^{8} \frac{1}{x^{1 / 3}} \mathrm{~d} x \\
& =\lim _{c \rightarrow 0+} \int_{c}^{8} x^{-1 / 3} \mathrm{~d} x \\
& =\lim _{c \rightarrow 0+}\left[\frac{3}{2} 8^{2 / 3}-\frac{3}{2} c^{2 / 3}\right]=6
\end{aligned}
$$

Since both these improper integrals converge, we see that the original improper integral $\int_{-1}^{8} \mathrm{~d} x / x^{1 / 3}$ converges to $\frac{9}{2}$.
7. this is an improper integral, since the interval of integration is $[2, \infty)$ and hence is not a closed interval. So, we evaluate:

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{(x-1)^{1 / 3}} \mathrm{~d} x & =\lim _{M \rightarrow \infty} \int_{2}^{M} \frac{1}{(x-1)^{1 / 3}} \mathrm{~d} x \\
& =\lim _{M \rightarrow \infty} \int_{2}^{M}(x-1)^{-1 / 3} \mathrm{~d} x \\
& =\lim _{M \rightarrow \infty}\left[\frac{3}{2}(M-1)^{2 / 3}-\frac{3}{2}\right]=\infty,
\end{aligned}
$$

and so this improper integral diverges.
8. this is an improper integral since the interval of integration is $(-\infty, \infty)$ and hence is not a closed interval. We evaluate this improper integral by breaking it up as the sum of two improper integrals $\int_{-\infty}^{\infty} x \mathrm{~d} x /\left(x^{2}+4\right)=$ $\int_{-\infty}^{0} x \mathrm{~d} x /\left(x^{2}+4\right)+\int_{0}^{\infty} x \mathrm{~d} x /\left(x^{2}+4\right)$, and evaluating the two resulting improper integrals separately. So,

$$
\begin{aligned}
\int_{-\infty}^{0} \frac{x}{x^{2}+4} \mathrm{~d} x & =\lim _{M \rightarrow-\infty} \int_{M}^{0} \frac{x}{x^{2}+4} \mathrm{~d} x \\
& =\lim _{M \rightarrow-\infty}\left[\frac{1}{2} \ln \left(M^{2}+4\right)-\frac{1}{2} \ln (4)\right]=\infty .
\end{aligned}
$$

Since one of these two improper integrals diverges, we don't need to evaluate the other one, as the original improper integral $\int_{-\infty}^{0} x \mathrm{~d} x /\left(x^{2}+\right.$ 4) necessarily diverges.
9. this is an improper integral, as the integrand is continuous on $(0,1]$ and $\lim _{x \rightarrow 0+} e^{\sqrt{x}} / \sqrt{x}=\infty$. So, we evaluate:

$$
\begin{aligned}
\int_{0}^{1} \frac{e^{\sqrt{x}}}{\sqrt{x}} \mathrm{~d} x & =\lim _{c \rightarrow 0+} \int_{c}^{1} \frac{e^{\sqrt{x}}}{\sqrt{x}} \mathrm{~d} x \\
& =\lim _{c \rightarrow 0+}(2-2 \sqrt{c})=2
\end{aligned}
$$

and so this improper integral converges to 2 .
10. this is an improper integral, as the interval of integration is $[1, \infty)$ and so is not a closed interval. Moreover, the integrand is not continuous at 0 but $\lim _{x \rightarrow 1+} 1 / x \ln (x)=\infty$, and so we need to break this improper integral into the sum of two improper integrals $\int_{1}^{\infty} \mathrm{d} x / x \ln (x)=$ $\int_{1}^{2} \mathrm{~d} x / x \ln (x)+\int_{2}^{\infty} \mathrm{d} x / x \ln (x)$, and evaluate the two resulting improper integrals separately. So,

$$
\begin{aligned}
\int_{1}^{2} \frac{1}{x \ln (x)} \mathrm{d} x & =\lim _{c \rightarrow 1+} \int_{c}^{2} \frac{1}{x \ln (x)} \mathrm{d} x \\
& =\lim _{c \rightarrow 1+}(\ln (\ln (2))-\ln (\ln (c)))=\infty
\end{aligned}
$$

and so this improper integral diverges, and so the original improper integral $\int_{1}^{\infty} \mathrm{d} x / x \ln (x)$ necessarily diverges.

