Question

Explain what a branching Markov chain is. Suppose a population is descended from a single individual (generation 0). Let $A(s)$ be the probability generating function for the number of offspring of any individual. Let X_{n} be the number of individuals in general n, with probability generating function $F_{n}(s)$.
Prove that $F_{n}(s)=F_{n-1}(A(s))$ and deduce that $F_{n}(s)=A\left(F_{n-1}(s)\right)$.
Suppose that the probability distribution of the number Z of offspring of any individual is given by

$$
P(Z=k)=q p^{k} \text { for } \mathrm{k}=0,1,2, \cdots
$$

where $0<p<1, q=1-p$ and $p \neq q$. Obtain the probability generating function $A(s)$ in this case, and verify that for $n=1,2, \cdots$,

$$
F_{n}(s)=\frac{q\left(p^{n}-q^{n}-\left(p^{n-1}-q^{n-1}\right) p s\right)}{p^{n+1}-q^{n+1}-\left(p^{n}-q^{n}\right) p s}
$$

Find the probability of eventual extinction of the population.

Answer

Suppose we have a population of individuals, each reproducing independently of the others. Suppose the distributions of the number of offspring of all individuals are identical. Let X_{n} be the number of individuals in the nth generation. Then $\left(X_{n}\right)$ is a branching Markov chain.
Suppose $P(z=k)=a_{k}$ and $A(s)=\sum_{k=0}^{\infty} a_{k} s^{k}$.
Now $P\left(X_{n}=l \mid X_{n-1}=j\right)=P\left(z_{1}+\cdots+z_{j}=1\right)=$ coeff. of s^{l} in $[A(s)]^{j}$ as the z_{i} are i.i.d.
$P\left(x_{n}=l\right)=\sum_{j=0}^{\infty} P\left(X_{n}=1 \mid X_{n-1}=j\right) P\left(X_{n-1}=j\right)$

$$
\begin{aligned}
& \text { so } \begin{aligned}
F_{n}(s) & =\sum_{l=0}^{\infty} \sum_{j=0}^{\infty}\left(\text { coeff. of } s^{l} \text { in }[A(s)]^{j}\right) P\left(X_{n-1}=j\right) s^{l} \\
& =\sum_{l=0}^{\infty}\left(\sum_{j=0}^{\infty}\left(\text { coeff. of } s^{l} \text { in }[A(s)]^{j}\right) s^{l}\right) P\left(X_{n-1}=j\right) \\
& =\sum_{j=0}^{\infty} P\left(X_{n-1}=j\right)[A(s)]^{j}=F_{n-1}(A(s))
\end{aligned}
\end{aligned}
$$

Now
$P\left(X_{0}=1\right)=1$ so $F_{0}(s)=s$.

$$
\begin{aligned}
& F_{1}(s)=F_{0}(A(s))=A(s) \\
& F_{2}(s)=F_{1}(A(s))=A(A(s)) \\
& \vdots \\
& F_{n}(s)=\underbrace{A\left(A(\cdots(A(s))) \cdots=A\left(F_{n-1}(s)\right)\right.}_{n \text { times }}
\end{aligned}
$$

Now when $a_{k}=q p^{k}$

$$
A(s)=\sum_{k=0}^{\infty} q p^{k} s^{k}=\frac{q}{1-p^{s}}
$$

Now $F_{1}(s)=A(s)-$ which fits the given formula for $n=1$. Assume the formula is true for n

$$
\begin{aligned}
& F_{n+1}(s) \\
= & A\left(F_{n}(s)\right) \quad \frac{q}{1-\frac{p q\left[p^{n}-q^{n}-\left(p^{n-1}-q^{n-1}\right) p s\right]}{p^{n+1}-q^{n+1}-\left(p^{n}-q^{n}\right) p s}} \\
= & \frac{q\left[p^{n+1}-q^{n+1}-\left(p^{n}-q^{n}\right) p s\right]}{p^{n+1}-q^{n+1}-\left(p^{n}-q^{n}\right) p s-p q\left[p^{n}-q^{n}-\left(p^{n-1}-q^{n-1}\right) p s\right]} \\
= & \frac{q\left[p^{n+1}-q^{n+1}-\left(p^{n}-q^{n}\right) p s\right]}{p^{n+1}} \\
= & \frac{p^{n+1}(1-q)-q^{n+1}(1-p)-\left[p^{n}(1-q)-q^{n}(1-p)\right] p s}{p} \\
= & \frac{q\left[p^{n+1}-q^{n+1}-\left(p^{n}-q^{n}\right) p s\right]}{p^{n+2}-q^{n+2}-\left(p^{n+1}-q^{n+1}\right) p s}
\end{aligned}
$$

as $p+q=1$.
Hence the result by induction.
The probability of extinction is the smallest positive root of the equation $A(s)=s$, and so is given by

$$
\frac{q}{1-p s}=s
$$

i.e. $p s^{2}-s+q=0(p s-q)(s-1)=0$ as $p+q=1$
$s=\frac{q}{p}, s=1$
So the extinction probability is 1 if $q \geq p$ and $\frac{q}{p}$ if $q<p$.

