Question

Explain what a branching Markov chain is. Suppose a population is descended from a single individual (generation 0). Let A(s) be the probability generating function for the number of offspring of any individual. Let X_n be the number of individuals in general n, with probability generating function $F_n(s)$.

Prove that $F_n(s) = F_{n-1}(A(s))$ and deduce that $F_n(s) = A(F_{n-1}(s))$. Suppose that the probability distribution of the number Z of offspring of any individual is given by

$$P(Z = k) = qp^{k} \text{ for } k = 0, 1, 2, \cdots$$

where 0 , <math>q = 1 - p and $p \neq q$. Obtain the probability generating function A(s) in this case, and verify that for $n = 1, 2, \dots$,

$$F_n(s) = \frac{q(p^n - q^n - (p^{n-1} - q^{n-1})ps)}{p^{n+1} - q^{n+1} - (p^n - q^n)ps}$$

Find the probability of eventual extinction of the population.

Answer

Suppose we have a population of individuals, each reproducing independently of the others. Suppose the distributions of the number of offspring of all individuals are identical. Let X_n be the number of individuals in the nth generation. Then (X_n) is a branching Markov chain.

Suppose
$$P(z = k) = a_k$$
 and $A(s) = \sum_{k=0}^{\infty} a_k s^k$.

Now $P(X_n = l \mid X_{n-1} = j) = P(z_1 + \dots + z_j = 1) = \text{coeff. of } s^l \text{ in } [A(s)]^j \text{ as the } z_i \text{ are i.i.d.}$

$$P(x_n = l) = \sum_{j=0}^{\infty} P(X_n = 1 \mid X_{n-1} = j) P(X_{n-1} = j)$$

$$F_n(s) = \sum_{l=0}^{\infty} \sum_{j=0}^{\infty} (\text{coeff. of } s^l \text{ in } [A(s)]^j) P(X_{n-1} = j) s^l$$

$$= \sum_{l=0}^{\infty} \left(\sum_{j=0}^{\infty} (\text{coeff. of } s^l \text{ in } [A(s)]^j) s^l \right) P(X_{n-1} = j)$$

$$= \sum_{j=0}^{\infty} P(X_{n-1} = j) [A(s)]^j = F_{n-1}(A(s))$$

Now

$$P(X_0 = 1) = 1 \text{ so } F_0(s) = s.$$

$$F_1(s) = F_0(A(s)) = A(s)$$

$$F_2(s) = F_1(A(s)) = A(A(s))$$

$$\vdots$$

$$F_n(s) = \underbrace{A(A(\cdots (A(s))) \cdots}_{n \text{ times}} = A(F_{n-1}(s))$$

Now when $a_k = qp^k$

$$A(s) = \sum_{k=0}^{\infty} q p^k s^k = \frac{q}{1 - p^s}$$

Now $F_1(s) = A(s)$ - which fits the given formula for n = 1. Assume the formula is true for n

$$F_{n+1}(s) = A(F_n(s))$$

$$= \frac{q}{1 - \frac{pq[p^n - q^n - (p^{n-1} - q^{n-1})ps]}{p^{n+1} - q^{n+1} - (p^n - q^n)ps}}$$

$$= \frac{q[p^{n+1} - q^{n+1} - (p^n - q^n)ps]}{p^{n+1} - q^{n+1} - (p^n - q^n)ps - pq[p^n - q^n - (p^{n-1} - q^{n-1})ps]}$$

$$= \frac{q[p^{n+1} - q^{n+1} - (p^n - q^n)ps]}{p^{n+1}(1 - q) - q^{n+1}(1 - p) - [p^n(1 - q) - q^n(1 - p)]ps}$$

$$= \frac{q[p^{n+1} - q^{n+1} - (p^n - q^n)ps]}{p^{n+2} - q^{n+2} - (p^{n+1} - q^{n+1})ps}$$

$$p + q = 1.$$

as p + q = 1.

Hence the result by induction.

The probability of extinction is the smallest positive root of the equation A(s) = s, and so is given by

$$\frac{q}{1 - ps} = s$$

i.e.
$$ps^2 - s + q = 0$$
 $(ps - q)(s - 1) = 0$ as $p + q = 1$ $s = \frac{q}{p}$, $s = 1$

So the extinction probability is 1 if $q \ge p$ and $\frac{q}{p}$ if q < p.