
Question

(a) A Markov chain has three states, and transition probability matrix

P =







0 1 0
1− p 0 p

0 1 0







where 0 < p < 1. Find the probability distribution for state occupancy
at the nth step (n ≥ 1) if initially all the states are equally likely to be
occupied.

(b) A Markov chain has the transition probability matrix given below. Clas-
sify the states and find the mean recurrence times for all recurrent
states. (Label the states 1,2,3,4,5,6,7 in order)

P =



























0 0 1

4

1

2

1

8

1

8
0

0 1

4

3

4
0 0 0 0

0 1

3

2

3
0 0 0 0

0 0 0 1

2
0 1

2
0

1

3
0 1

3
0 1

6

1

6
0

0 0 0 1

4
0 3

4
0

1 0 0 0 0 0 0



























Answer

(a) P 2 =







1− p 0 p

0 1 0
1− p 0 p





 and P 3 = P

so P n = P if n is odd and P n = P 2 if n is even. So if the initial

distribution is
(

1

3
,
1

3
,
1

3

)

the distribution at step n is:

(

1

3
(1− p),

2

3
,
1

3
p

)

if n is odd.

(

2

3
(1− p),

1

3
,
2

3
p

)

if n is even.

(b) The transition diagram is as follows:
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{2, 3} and {4, 6} both form irreducible closed aperiodic sets of states,
and so are ergodic.

States 1, 5 intercommunicate and are of the same type.

The probability of return to state 1 is
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Hence states 1 and 5 are transient.

OR:

The probability of leaving state 1 initially to a state other than 5 is
7

8
.

Return is only possible from state 5. So the probability of return is at

most
1

8
< 1.

State 7 is transient since the probability of return is zero.

To calculate mean recurrence times
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