Question

(a) A Markov chain has three states, and transition probability matrix

$$P = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 - p & 0 & p \\ 0 & 1 & 0 \end{array}\right)$$

where $0 . Find the probability distribution for state occupancy at the nth step <math>(n \ge 1)$ if initially all the states are equally likely to be occupied.

(b) A Markov chain has the transition probability matrix given below. Classify the states and find the mean recurrence times for all recurrent states. (Label the states 1,2,3,4,5,6,7 in order)

$$P = \begin{pmatrix} 0 & 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{8} & \frac{1}{8} & 0\\ 0 & \frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 & 0\\ 0 & \frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0\\ \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{6} & \frac{1}{6} & 0\\ 0 & 0 & 0 & \frac{1}{4} & 0 & \frac{3}{4} & 0\\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Answer

(a)
$$P^2 = \begin{pmatrix} 1-p & 0 & p \\ 0 & 1 & 0 \\ 1-p & 0 & p \end{pmatrix}$$
 and $P^3 = P$

so $P^n = P$ if n is odd and $P^n = P^2$ if n is even. So if the initial distribution is $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ the distribution at step n is:

$$\left(\frac{1}{3}(1-p), \frac{2}{3}, \frac{1}{3}p\right)$$
 if n is odd.
 $\left(\frac{2}{3}(1-p), \frac{1}{3}, \frac{2}{3}p\right)$ if n is even.

(b) The transition diagram is as follows:

PICTURE

 $\{2,3\}$ and $\{4,6\}$ both form irreducible closed aperiodic sets of states, and so are ergodic.

States 1, 5 intercommunicate and are of the same type.

The probability of return to state 1 is

$$f_{11} = \frac{1}{8} \cdot \frac{1}{3} + \frac{1}{8} \cdot \frac{1}{6} \cdot \frac{1}{3} + \frac{1}{8} \cdot \left(\frac{1}{6}\right)^{2} \cdot \frac{1}{3} + \cdots$$

$$= \frac{1}{8} \cdot \frac{1}{3} \left(1 + \frac{1}{6} + \frac{1}{6^{2}} + \cdots\right)$$

$$= \frac{1}{8} \cdot \frac{1}{3} \cdot \frac{1}{1 - \frac{1}{6}}$$

$$= \frac{1}{8} \cdot \frac{1}{3} \cdot \frac{6}{5} = \frac{1}{20} < 1$$

Hence states 1 and 5 are transient.

OR:

The probability of leaving state 1 initially to a state other than 5 is $\frac{7}{8}$. Return is only possible from state 5. So the probability of return is at most $\frac{1}{8} < 1$.

State 7 is transient since the probability of return is zero.

To calculate mean recurrence times

$$\mu_{2} = \frac{1}{4} + 2 \cdot \frac{3}{4} \cdot \frac{1}{3} + 3 \cdot \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{3} + 4 \cdot \frac{3}{4} \cdot \left(\frac{2}{3}\right)^{2} \cdot \frac{1}{3} + \cdots$$

$$= \frac{1}{4} + \frac{3}{4} \cdot \frac{1}{3} \left[2 + 3 \cdot \frac{2}{3} + 4 \left(\frac{2}{3}\right)^{2} + \cdots \right]$$

$$s = a + (a+1)r + (a+2)r^{2} + \cdots$$

$$rs = ar + (a+1)r^{2} + \cdots$$

$$s - rs = a + r + r^{2} + \cdots$$

$$= a + \frac{r}{1-r}$$

$$s = \frac{a}{1-r} + \frac{r}{(1-r)^{2}}$$

so
$$\mu_2 = \frac{1}{4} + \frac{3}{4} \cdot \frac{1}{3} \left[3 \cdot 2 + 9 \cdot \frac{2}{3} \right] = 3\frac{1}{4}$$

$$\mu_{3} = \frac{2}{3} + \frac{1}{3} \cdot \frac{3}{4} \left[2 + 3 \cdot \frac{1}{4} + 4 \cdot \left(\frac{1}{4}\right)^{2} + \cdots \right]$$

$$= \frac{2}{3} + \frac{1}{3} \cdot \frac{3}{4} \left[2 \cdot \frac{4}{3} + \frac{1}{4} \cdot \left(\frac{4}{3}\right)^{2} \right]$$

$$= \frac{2}{3} + \left(\frac{2}{3} + \frac{1}{9}\right]$$

$$= 1\frac{4}{9}$$

$$\mu_4 = \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{4} \left[2 + 3 \cdot \frac{3}{4} + 4 \cdot \left(\frac{3}{4} \right)^2 + \cdots \right]$$

$$= \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{4} \left[2 \cdot 4 + \frac{3}{4} \cdot 4^2 \right]$$

$$= \frac{1}{2} + \frac{1}{2} \cdot 5 = 3$$

$$\mu_{6} = \frac{3}{4} + \frac{1}{2} \cdot \frac{1}{4} \left[2 + 3 \cdot \frac{1}{2} + 4 \cdot \left(\frac{1}{2} \right)^{2} + \cdots \right]$$

$$= \frac{3}{4} + \frac{1}{2} \cdot \frac{1}{4} \left[2 \cdot 2 + \frac{1}{2} \cdot 2^{2} \right]$$

$$= \frac{3}{4} + \left(\frac{1}{4} + 3 \right]$$

$$= \frac{3}{2}$$