Question

(a) A Markov chain has three states, and transition probability matrix

0 10
P=|11—-p 0 p
0 10

where 0 < p < 1. Find the probability distribution for state occupancy
at the nth step (n > 1) if initially all the states are equally likely to be
occupied.

(b) A Markov chain has the transition probability matrix given below. Clas-
sify the states and find the mean recurrence times for all recurrent
states. (Label the states 1,2,3,4,5,6,7 in order)
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Answer
l—p 0 p
(a) P?2= 0 10 |andP*=P
I=p 0 p
so P* = P if n_is odd and P® = P? if n is even. So if the initial
distribution is 33 3 the distribution at step n is:
1 2 1

2 1 2
(3(1—p), 3 3p) if n is even.

(b) The transition diagram is as follows:
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{2,3} and {4,6} both form irreducible closed aperiodic sets of states,
and so are ergodic.

States 1, 5 intercommunicate and are of the same type.

The probability of return to state 1 is
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Hence states 1 and 5 are transient.

OR:

7
The probability of leaving state 1 initially to a state other than 5 is 3
Return is only possible from state 5. So the probability of return is at

t — < 1.
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State 7 is transient since the probability of return is zero.

To calculate mean recurrence times
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