Question

(a) A Markov chain has three states, and transition probability matrix

$$
P=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1-p & 0 & p \\
0 & 1 & 0
\end{array}\right)
$$

where $0<p<1$. Find the probability distribution for state occupancy at the nth step $(n \geq 1)$ if initially all the states are equally likely to be occupied.
(b) A Markov chain has the transition probability matrix given below. Classify the states and find the mean recurrence times for all recurrent states. (Label the states $1,2,3,4,5,6,7$ in order)

$$
P=\left(\begin{array}{ccccccc}
0 & 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{8} & \frac{1}{8} & 0 \\
0 & \frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{6} & \frac{1}{6} & 0 \\
0 & 0 & 0 & \frac{1}{4} & 0 & \frac{3}{4} & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Answer
(a) $P^{2}=\left(\begin{array}{ccc}1-p & 0 & p \\ 0 & 1 & 0 \\ 1-p & 0 & p\end{array}\right)$ and $P^{3}=P$
so $P^{n}=P$ if n is odd and $P^{n}=P^{2}$ if n is even. So if the initial distribution is $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ the distribution at step n is:
$\left(\frac{1}{3}(1-p), \frac{2}{3}, \frac{1}{3} p\right)$ if n is odd.
$\left(\frac{2}{3}(1-p), \frac{1}{3}, \frac{2}{3} p\right)$ if n is even.
(b) The transition diagram is as follows:

PICTURE
$\{2,3\}$ and $\{4,6\}$ both form irreducible closed aperiodic sets of states, and so are ergodic.
States 1, 5 intercommunicate and are of the same type.
The probability of return to state 1 is

$$
\begin{aligned}
f_{11} & =\frac{1}{8} \cdot \frac{1}{3}+\frac{1}{8} \cdot \frac{1}{6} \cdot \frac{1}{3}+\frac{1}{8} \cdot\left(\frac{1}{6}\right)^{2} \cdot \frac{1}{3}+\cdots \\
& =\frac{1}{8} \cdot \frac{1}{3}\left(1+\frac{1}{6}+\frac{1}{6^{2}}+\cdots\right)^{2} \\
& =\frac{1}{8} \cdot \frac{1}{3} \cdot \frac{1}{1-\frac{1}{6}} \\
& =\frac{1}{8} \cdot \frac{1}{3} \cdot \frac{6}{5}=\frac{1}{20}<1
\end{aligned}
$$

Hence states 1 and 5 are transient.
OR:
The probability of leaving state 1 initially to a state other than 5 is $\frac{7}{8}$.
Return is only possible from state 5 . So the probability of return is at most $\frac{1}{8}<1$.
State 7 is transient since the probability of return is zero.
To calculate mean recurrence times

$$
\begin{aligned}
& \mu_{2}=\frac{1}{4}+2 \cdot \frac{3}{4} \cdot \frac{1}{3}+3 \cdot \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{3}+4 \cdot \frac{3}{4} \cdot\left(\frac{2}{3}\right)^{2} \cdot \frac{1}{3}+\cdots \\
& =\frac{1}{4}+\frac{3}{4} \cdot \frac{1}{3}\left[2+3 \cdot \frac{2}{3}+4\left(\frac{2}{3}\right)^{2}+\cdots\right] \\
& s=a+(a+1) r+(a+2) r^{2}+\cdots \\
& r s=\quad a r+(a+1) r^{2}+\cdots \\
& s-r s=a+r+\quad r^{2}+\cdots \\
& =a+\frac{r}{1-r} \\
& s=\frac{a}{1-r}+\frac{r}{(1-r)^{2}} \\
& \text { so } \mu_{2}=\frac{1}{4}+\frac{3}{4} \cdot \frac{1}{3}\left[3 \cdot 2+9 \cdot \frac{2}{3}\right]=3 \frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
\mu_{3} & =\frac{2}{3}+\frac{1}{3} \cdot \frac{3}{4}\left[2+3 \cdot \frac{1}{4}+4 \cdot\left(\frac{1}{4}\right)^{2}+\cdots\right] \\
& =\frac{2}{3}+\frac{1}{3} \cdot \frac{3}{4}\left[2 \cdot \frac{4}{3}+\frac{1}{4} \cdot\left(\frac{4}{3}\right)^{2}\right] \\
& =\frac{2}{3}+\left(\frac{2}{3}+\frac{1}{9}\right] \\
& =1 \frac{4}{9} \\
\mu_{4} & =\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{4}\left[2+3 \cdot \frac{3}{4}+4 \cdot\left(\frac{3}{4}\right)^{2}+\cdots\right] \\
& =\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{4}\left[2 \cdot 4+\frac{3}{4} \cdot 4^{2}\right] \\
& =\frac{1}{2}+\frac{1}{2} \cdot 5=3 \\
\mu_{6} & =\frac{3}{4}+\frac{1}{2} \cdot \frac{1}{4}\left[2+3 \cdot \frac{1}{2}+4 \cdot\left(\frac{1}{2}\right)^{2}+\cdots\right] \\
& =\frac{3}{4}+\frac{1}{2} \cdot \frac{1}{4}\left[2 \cdot 2+\frac{1}{2} \cdot 2^{2}\right] \\
& =\frac{3}{4}+\left(\frac{1}{4}+3\right] \\
& =\frac{3}{2}
\end{aligned}
$$

