Question

State Lebesgue's theorem on dominated convergence for a sequence of functions $\left\{f_{n}\right\}$.
The functions $f(x, t)$ has the following properties:
i) $f(x, t)$ is an integrable function of x, for each t ;
ii) there is a function $h(x)$ such that for each $x, \lim _{t \rightarrow a} f(x, t)=h(x)$, where a is a fixed real number;
iii) there is an integrable function $g(x)$ with the property that, for each x, there exists $\delta>0$ such that for $|t-a|<\delta$,

$$
|f(x, t)| \leq g(x)
$$

Use Lebesgue's theorem to show that

$$
\lim _{t \rightarrow a} \int f(x, t) d x=\int h(x) d x
$$

Suppose that $\phi(x, t)$ is an integrable function of x, for each t, and that the partial derivative $\frac{\partial \phi}{\partial t}$ exists for all x, t.
Suppose also that there is an integrable function $\psi(x)>0$ such that

$$
\left|\frac{\partial \phi}{\partial t}\right| \leq \psi(x)
$$

for all x. Prove that

$$
\frac{d}{d t} \int \phi(x, t) d x=\int \frac{\partial \phi}{\partial t} d x
$$

If $I(\alpha)=\int_{0}^{\infty} x^{\alpha} e^{-x} d x, \quad \alpha>0$,
show that

$$
I(\alpha)=I^{\prime}(\alpha+1)-(\alpha+1) I^{\prime}(\alpha) .
$$

Answer

Lebesgue's theorem on dominated convergence states that if $\left\{f_{n}\right\}$ is a sequence of measurable functions with the property that $\left|f_{n}(x)\right| \leq g(x)$ for all n, x where $g(x)$ is integrable, and if $f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$ for all x, then f is integrable, and $\lim _{n \rightarrow \infty} \int f_{n}(x) d x=\int f(x) d x$.

Let $\left\{t_{n}(x)\right\}$ be an arbitrary sequence of real numbers satisfying $\left|t_{n}-a\right|<\delta(x)$ and converging to a.
Let $f_{n}(x)=f\left(x, t_{n}(x)\right)$
Then $\left|f_{n}(x)\right| \leq g(x)$ for all x.
Thus $\lim _{n \rightarrow \infty} \int f\left(x, t_{n}\right) d x=\int h(x) d x$ by Lebesgue's theorem.
Hence $\lim _{t \rightarrow \infty} \int f(x, t) d x=\int h(x) d x$
Now let $\Phi(t)=\int \phi(x, t) d x$
Consider $\frac{\Phi(t+h)-\Phi(t)}{h}$
$=\int \frac{\phi(x, t+h)-\phi(x, t)}{h} d x=\int X(x, h) d x$
Now $\left.X(x, h) \rightarrow \frac{\partial \phi}{\partial t}\right|_{x} \quad$ as $h \rightarrow 0$
Thus there exists δ such that for all h satisfying $0<|h|<\delta$,
$\left.\left|X(x, h)-\frac{\partial \phi}{\partial t}\right|_{x} \right\rvert\,<\psi(x)$
Thus for all h satisfying $0<|h|<\delta$, we have
$\left.|X(x, h)| \leq\left|\frac{\partial \phi}{\partial t}\right|_{x} \right\rvert\,+\psi(x) \leq 2 \psi(x)$
Since ψ is integrable 2ψ is integrable and so the above result shows that
$\lim _{h \rightarrow 0} \int X(x, h) d x=\int \frac{\partial \phi}{\partial t} d x$
i.e. $\frac{d}{d t} \int \phi(x, t) d x=\int \frac{\partial \phi}{\partial t} d x$
$I(\alpha)=\int_{0}^{\infty} x^{\alpha} e^{-x} d x$
$\frac{\partial}{\partial \alpha}\left(x^{\alpha} e^{-x}\right)=x^{\alpha}(\log x) e^{-x}$
$=x^{\alpha}(\log x) e^{-\frac{1}{2} x} e^{-\frac{1}{2} x}<e^{-\frac{1}{2} x} \quad$ for $x \geq x_{0}$
since $x^{\alpha}(\log x) e^{-\frac{1}{2} x} \rightarrow 0$ as $x \rightarrow \infty$
also $x^{\alpha}(\log x) e^{-\frac{1}{2} x} \rightarrow 0$ as $x \rightarrow 0$ and so
$\left|x^{\alpha}(\log x) e^{-\frac{1}{2} x}\right|<1$ if $0<x \leq x_{1}$.
Thus if
$\psi(x)=\left\{\begin{array}{cr}1 & 0<x \leq x_{1} \\ \left|x^{\alpha}(\log x) e^{-\frac{1}{2} x}\right| & x_{1}<x<x_{2} \\ e^{-\frac{1}{2} x} & x\end{array}\right.$
$\left|\frac{\partial}{\partial \alpha}\left(x^{\alpha} e^{-x}\right)\right| \leq \psi(x)$ and ψ is integrable,
thus $I^{\prime}(\alpha)=\int_{0}^{\infty} \frac{\partial}{\partial \alpha}\left(x^{\alpha} e^{-x}\right)$
$(\alpha+1) I^{\prime}(\alpha)=\int_{0}^{\infty}(\alpha+1) x^{\alpha}(\log x) e^{-x} d x$
$=\left[x^{\alpha+1}(\log x) e^{-x}\right]_{0}^{\infty}-\int_{0}^{\infty} x^{\alpha+1}\left[e^{-x} \frac{1}{x}-(\log x) e^{-x}\right] d x$
$=\int_{0}^{\infty} x^{\alpha+1}(\log x) e^{-x} d x-\int_{0}^{\infty} x^{\alpha} e^{-x} d x$
$=I^{\prime}(\alpha+1)-I(\alpha)$
Hence $I(\alpha)=I^{\prime}(\alpha+1)-(\alpha+1) I^{\prime}(\alpha)$

