Question

Give an outline of the development necessary for a definition of the Lebesgue intergral of measurable function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$. Any theorems concerning measurable functions should be stated but not proved.
Show that if f and g are two integrable functions then the function $\min (f, g)$ is integratable, and that

$$
f \min (f, g) \leq \min \left(\int f, \int g\right)
$$

Discuss the case when equality occurs.

Answer

We first consider the so called simple function. A function $f: \Omega \rightarrow R^{*}$ is called a simple function if it can be expressed in the form

$$
\begin{equation*}
f(x)=\sum_{i=1}^{n} c_{i} X_{E i}(x) \tag{1}
\end{equation*}
$$

where $e_{i} \epsilon R^{*},\left\{E_{1}, E_{2}, \ldots E_{n}\right\}$ is a partition of Omega into disjoint measurable sets, and $X_{A}(x)$ is the characteristic function of the set A.
We then introduce the concept of a measurable function.. A function $f ; \Omega \rightarrow$ R^{*} is said to be measurable if and onlt if for all $c \in R^{*},\{x \mid f(x) \leq c\}$ is a measurable set.
We the prove the fundemental result stating that any non-negitative measurable function can be expressed as the limit if monotonic increasing sequence of simple functions of the form (1) by

$$
\int f=\sum_{i=1}^{n} c_{i} \cdot m\left(E_{i}\right)
$$

proving htat $\int f$ is independent of the representation of f in the form (1). We then define the integral of a non-negative measurable function f by expressing f as

$$
\begin{equation*}
f=\lim _{n \rightarrow \infty} f_{n} \tag{2}
\end{equation*}
$$

where $\left\{f_{n}\right\}$ is an increasing sequence of simple functions, and by defining

$$
\int f=\lim _{n \rightarrow \infty} \int f_{n}
$$

proving also that $\int f$ independent of the representation of f in the form (2)

We extend the definition to measurable functions which are positive or negative by adding the functions f_{+}, f_{-}:

$$
\begin{aligned}
f_{+}(x) & =\left\{\begin{array}{rll}
f(x) & \text { if } & f(x)>0 \\
0 & \text { if } & f(x) \leq 0
\end{array}\right. \\
F_{-}(x) & =\left\{\begin{array}{rll}
-f(x) & \text { if } & f(x)<0 \\
0 & \text { if } & f(x) \geq 0
\end{array}\right.
\end{aligned}
$$

Then for all x we have that $f(x)=f_{+}(x)-f_{-}(x)$. After proving that for f, measurable, f_{+}and f_{-}are also measurable, we define

$$
\int f=\int f_{+}-\int f_{-}
$$

whenever R.H.S. is meaningful (i.e.excluding $\infty-\infty$)

We now prove that

$$
\min (f, g)=f-(f-g)_{+}
$$

Suppose $f(x) \leq g(x)$ then $f(x)-g(x) \leq 0$ So $(f-g)_{+}(x)=0$ and $\min (f(x), g(x))=f(x)$ If $f(x)>g(x)$ then $f(x)-g(x)>0$. Thus $f(x)-$ $(f-g)_{+}(x)=g(x)=\min (f(x), g(x))$.
Now the difference of two integrable function is integrable, and so

$$
\min (f, g)=f-(f-g)_{+}
$$

is integrable. Also

$$
\int \min (f, g)=\int f-\int(f-g)_{+} \leq \int f
$$

since $(f-g)_{+} \geq 0$ and so $\int(f-g)_{+} \geq 0$
Similarly

$$
\int \min (f, g) \leq \int g
$$

and so

$$
\int \min (f, g) \leq \min \left(\int f \int g\right)
$$

Suppose $\min \left(\int f \int g\right)=\int f$ and that $\int \min (f, g)=\int f$
then $\int(f-g)_{+}=0$. But $(f-g)_{+} \geq 0$ so $(f-g)_{+}=0$ a.e.
Therefore $f(x) \leq g(x)$ a.e.

