Question

Give an outline of the development necessary for a definition of the Lebesgue intergral of measurable function $f: \mathbf{R}^n \to \mathbf{R}$. Any theorems concerning measurable functions should be stated but not proved.

Show that if f and g are two integrable functions then the function min(f,g) is integratable, and that

$$f \min(f, g) \le \min\left(\int f, \int g\right).$$

Discuss the case when equality occurs.

Answer

We first consider the so called simple function. A function $f:\Omega\to R^*$ is called a simple function if it can be expressed in the form

$$f(x) = \sum_{i=1}^{n} c_i X_{Ei}(x) \tag{1}$$

where $e_i \in \mathbb{R}^*$, $\{E_1, E_2, \dots E_n\}$ is a partition of Omega into disjoint measurable sets, and $X_A(x)$ is the characteristic function of the set A.

We then introduce the concept of a measurable function. A function $f: \Omega \to \mathbb{R}^*$ is said to be measurable if and onlt if for all $c \in \mathbb{R}^*$, $\{x | f(x) \leq c\}$ is a measurable set.

We the prove the fundemental result stating that any non-negitative measurable function can be expressed as the limit if monotonic increasing sequence of simple functions of the form (1) by

$$\int f = \sum_{i=1}^{n} c_i \cdot m(E_i),$$

proving htat $\int f$ is independent of the representation of f in the form (1). We then define the integral of a non-negative measurable function f by expressing f as

$$f = \lim_{n \to \infty} f_n \tag{2}$$

where $\{f_n\}$ is an increasing sequence of simple functions, and by defining

$$\int f = \lim_{n \to \infty} \int f_n,$$

proving also that $\int f$ independent of the representation of f in the form (2)

We extend the definition to measurable functions which are positive or negative by adding the functions f_+ , f_- :

$$f_{+}(x) = \begin{cases} f(x) & \text{if } f(x) > 0 \\ 0 & \text{if } f(x) \le 0 \end{cases}$$

$$F_{-}(x) = \begin{cases} -f(x) & \text{if } f(x) < 0 \\ 0 & \text{if } f(x) \ge 0 \end{cases}$$

Then for all x we have that $f(x) = f_{+}(x) - f_{-}(x)$. After proving that for f, measurable, f_{+} and f_{-} are also measurable, we define

$$\int f = \int f_+ - \int f_-$$

whenever R.H.S. is meaningful (i.e. excluding $\infty - \infty$)

We now prove that

$$min(f,g) = f - (f - g)_{+}$$

Suppose $f(x) \leq g(x)$ then $f(x) - g(x) \leq 0$ So $(f - g)_{+}(x) = 0$ and min(f(x), g(x)) = f(x) If f(x) > g(x) then f(x) - g(x) > 0. Thus $f(x) - (f - g)_{+}(x) = g(x) = min(f(x), g(x))$.

Now the difference of two integrable function is integrable, and so

$$min(f,g) = f - (f - g)_{+}$$

is integrable. Also

$$\int min(f,g) = \int f - \int (f-g)_{+} \le \int f$$

since $(f - g)_+ \ge 0$ and so $\int (f - g)_+ \ge 0$ Similarly

$$\int \min(f, g) \le \int g,$$

and so

$$\int \min(f,g) \le \min\left(\int f \int g\right).$$

Suppose $min\left(\int f \int g\right) = \int f$ and that $\int min(f,g) = \int f$ then $\int (f-g)_+ = 0$. But $(f-g)_+ \ge 0$ so $(f-g)_+ = 0$ a.e. Therefore f(x) < g(x) a.e.