Question

Define what is meant by a measurable set, and what is meant by a measurable function.
Show that if $\left\{A_{n}\right\}$ is a sequence of measurable sets with the properties $A_{n+1} \subseteq$ A_{n} for $n=1,2, \cdots$ and

$$
m\left(A_{1}\right)<\infty
$$

then

$$
m\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} m\left(A_{n}\right)
$$

Suppose f is a measurable function defined on $[0,1]$. Define the function $g(x)$ by

$$
g(x)=m(\{y: f(y) \geq x\})
$$

Show that for each real number a,

$$
\lim _{x \rightarrow a-} g(x)=g(a)
$$

Is it true

$$
\lim _{x \rightarrow a+} g(x)=g(a) ?
$$

Justify your assertion.

Answer

A set E is said to be measurable if for each set S, we have

$$
m^{*}(S)=m^{*}(S-E)+m^{*}(S \cap E)
$$

A function F is said to be measurable if for each number c, the set

$$
\{x \mid f(x) \geq c\}
$$

is measurable.

We first prove that if A_{1}, A_{2} are all measurable ad $A-1 \subseteq A_{2} \subseteq \cdots$ then

$$
\begin{aligned}
m\left(\bigcup_{n=1}^{\infty} A_{n}\right) & =\lim _{n \rightarrow \infty} m\left(A_{n}\right) \\
\bigcup_{n=1}^{\infty} A_{n} & =A_{1} \cup\left(A_{2}-A_{1}\right) \cup\left(A_{3}-A_{2}\right) \cup \cdots \\
& =A_{1} \cup \bigcup_{n=1}^{\infty}\left(A_{n+1}-A_{n}\right)
\end{aligned}
$$

So, by additivity ,

$$
\begin{aligned}
m\left(\bigcup_{n=1}^{\infty}\right) & =m\left(A_{i}\right)+\sum_{n-1}^{\infty} m\left(A_{n+1}-A_{n}\right) \\
& =\lim _{n \rightarrow \infty}\left[m\left(A_{1}\right)+\left(A_{2}-A_{n}\right)+\cdots+\left(A_{n+1}-A_{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} m\left(A_{n}\right)
\end{aligned}
$$

Now let $B_{i}=A_{1}-A_{i}$
$\phi=B_{1} \subseteq B_{2} \subseteq \cdots$ so $m\left(\bigcup_{i=1}^{\infty} B_{i}\right)=\lim _{n \rightarrow \infty} m\left(B_{n}\right)$
Thus $m\left(A_{1}-\bigcap_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} m\left(A_{1}-A_{n}\right)$
Therefore $m\left(A_{1}\right)-m\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty}(m(A-1)-m(A-n))$

$$
\operatorname{using} m\left(A_{i}\right)<\infty
$$

Therefore $m\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} m\left(A_{n}\right)$
Let $g(x)=m(\{y \mid f(y) \geq x\})$
Let a_{1}, a_{2}, \ldots be an arbitary sequence with the properties that $a_{1} \leq a_{2} \leq \ldots$
and $a_{n} \rightarrow a$
Let $A_{n}=\left\{y \mid f(y) \geq a_{n}\right\}$
Let $A=\{y \mid f(y) \geq a\}$
We first prove that $A=\bigcap_{n=1}^{\infty} A_{n}$
Suppose $y \in A$ then $f(y) \geq a$ and so fo all $n, f(y) \geq a_{n}$. Hence $y \epsilon \bigcap_{n=1}^{\infty} A_{n}$ conversley if $y \epsilon \bigcap_{n=1}^{\infty} A_{n}$ then for all $\mathrm{n}, f(y) \geq a_{n}$ and so $f(y) \geq a_{n+1} \geq a_{n}$ and so $y \epsilon A_{n}$.
Also , since $A_{1} \subseteq[0,1]$, we have $m\left(A_{1}\right) \leq 1 \leq \infty$.
Hence $m\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} m\left(A_{n}\right)$
or $g(a)=\lim _{n \rightarrow \infty} g\left(a_{n}\right)$
But a_{n} is an arbitary increasing sequence $\rightarrow a$ and so $g(a)=\lim _{x \rightarrow a-} g(x)$
It is not true that $\lim _{x \rightarrow a+} g(x)=g(a)$ as the following example shows:
Let $f(x)=1$ for all $x \epsilon[0,1]$
$g(1)=m(\{y \mid f(y) \geq 1\})=1$
If $x>1 g(x)=m(\{y \mid f(y) \geq x>1\})=0$
So $\lim _{x \rightarrow 1+} g(x)=0 \neq g(1)$

