Question

Let A be a closed measurable set of real numbers. Prove that if A has an interior point then A has positive measure. Is the converse true? Justify your answer fully.

(Any properties of Lebesgue measure used should be stated explicitly.)

Answer

Suppose A has an interior point a.

Then there exists $\epsilon > 0$ such that $(a - \epsilon, a + \epsilon) \subseteq A$

$$m((a - \epsilon, a + \epsilon)) = 2\epsilon > 0,$$

and so, since if $S \subseteq T$, $m(S) \leq m(T)$

$$m(A) \ge 2\epsilon > 0$$

The converse if NOT true as the following examples show.

Let I_0 be the unit interval. Delete the middle open interval of length $\lambda_1|I_0|$. There remain tow closed interval, denoted by $I_{1,1}$ and $I_{1,2}$ of length $\frac{1}{2}(1-\lambda_1)$ each.

$$\begin{array}{c|c} I_{1,1} & I_{1,2} \\ \hline & & \lambda |I_0| \\ \hline \end{array}$$

Let
$$S_1 = \bigcup_{1=2}^{2} I_{1,i}$$

We delete from I_{11} and I_{12} the middle open interval of length $\lambda_2|I_{11}|$

$$I_{2,1}$$
 $I_{2,2}$ $I_{2,3}$ $I_{2,4}$

There remain four closed intervals, denoted by $I_{2,1}$, $I_{2,2}$, $I_{2,3}$ and $I_{2,4}$ each of length $\frac{1}{2^2}(1-\lambda_1)(1-\lambda_2)$

Let
$$S_2 = \bigcup_{i=1}^4 I_{2,i}$$

We proceed inductively.

Let
$$S_n = \bigcup_{i=1}^{2^n} I_{n,i}$$
 where $|I_{n,i}| = \frac{1}{2^n} \prod_{j=1}^n (1 - \lambda j), i = 1, 2, \dots, 2^n; n = 1, 2, \dots k$

We then remove the middle open interval of length $\lambda_{k+1}|I_{k,i}|$ from each $I_{k,i}$. This leaves 2^{k+1} closed intervals $I_{k+1,i}$, $i=1,2,...,2^{k+1}$ each of length $\frac{1}{2^{k+1}}\prod_{j=1}^{k+1}(1=\lambda_j)$.

Let $s_{k+1} = \bigcup_{i=1}^{2^{k+1}} I_{k+1,i}$ Since, for any closed interval, m(I) = |I| and since m is additive over disjoint sets, we have

$$m(S_k) = \sum_{i=1}^{2^k} m(I_{k,i})$$

$$= \sum_{i=1}^{2^k} |I_{k,i}|$$

$$= \sum_{i=1}^{2^k} \frac{1}{2^k} \prod_{j=1}^k (1 - \lambda_j)$$

$$= \prod_{j=1}^k (1 - \lambda_j)$$

Also $m(I_0) = 1 < \infty$, and $i_0 \supseteq S_1 \supseteq S_2 \supseteq \cdots$

Hence if we let $S = \bigcap_{k=1}^{\infty} S_k S$ is a non-empty closed set and therefore measur-

able, and we have $m(s) = \lim_{k \to \infty} m(s_k) = \prod_{j=1}^{\infty} (1 - \lambda_j)$ we choose $\lambda_j = \frac{1}{2^j}$. Then

since $\sum \frac{1}{2^j}$ converges, $\prod (1 - \frac{1}{2^j})$ converges to a number α with $0 < \alpha < 1$ Hence $m(S) = \alpha > 0$.

It remains to prove that S has no interior point. Let x be an arbitrary point of S and let $\epsilon > 0$. Choose m so that $\frac{1}{2^{n-1}} < \epsilon$. $x \in S$ so $x \in S_n$. $S_n = \bigcup_{i=1}^{2^n} I_{n,i}$ so for some i we have $x \in I_{n,i}$.

Let y be the mid point of $I_{n-i,j}$, where $j = \frac{i}{2}$ or $\frac{i+1}{2}$ according as i is even or odd.

 $I_{n-i,j}$ is the interval giving rise to $I_{n,i}$. $y \in S_{n-1}$ but $y \notin S_n$ and so $y \notin S$.

However $x \in I_{n-i,j}$ so $|x-y| \le \frac{1}{2^{n-1}} < \epsilon$

Thus x is not an interior point of S and so S as no interior points.