Question

Define Lebesgue outer measure m* in 3-dimensional Euclidean space \mathbb{R}^3 . Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the transformation defined by

$$(x, y, z) \rightarrow (hx, ky, lz),$$

where h, k and l are nonzero real numbers. If E is a subset of \mathbf{R}^3 , express $m^*(T(E))$ in terms of $m^*(E)$, proving your relationship from your dimension of m^* . Show also that if E is measurable then T(E) is measurable. Find the Lebesgue measure in \mathbf{R}^3 of the ellipsoid

$$\left\{ (x, y, z) : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\}.$$

[The Lebesgue measure of the unit ball in \mathbb{R}^3 may be assumed.]

Answer

If E is a subset of \mathbb{R}^3 , we define Lebesgue outer measure m^* by

$$m^*(E) = \inf_{\{R_i\}} \sum_{i=1}^{\infty} |R_i|$$

Where $\{R_i\}$ denotes a system of rectangles of the from $\{(x_1, x_2, x_3) | a_i < x_1 < b_i i = 1, 2, 3\}$ with the property that $E \subseteq \bigcup_{i=1}^{\infty} R_i$, and where

$$|R_i| = (b_1 - a_1)(b_2 - a_2)(b_3 - a_3)$$

Now if R_i is the rectangle defined by

$$a_1 < x_2 < b_1$$

 $a_2 < x_2 < b_2$
 $a_3 < x_3 < b_3$

Then $T(R_i)$ is a rectangle defined by

$$A \begin{cases} ha_1 < x_2' < hb_1 & \text{(or } hb_1 < x_1' < ha_1 \text{ if } h < 0) \\ ka_2 < x_2' < kb_2 & \text{(or } kb_1 < x_1' < ka_1 \text{ if } k < 0) \\ la_3 < x_3' < lb_3 & \text{(or } lb_1 < x_1' < la_1 \text{ if } l < 0) \end{cases}$$

Now if $\epsilon > 0$, we can find a system $\{R_i\}$, such that

$$\sum_{i=1}^{\infty} |R_i| \le m^*(E) + \epsilon,$$

by the defination $T(R_i)$ is a rectangle, and since $\bigcup_{i=1}^{\infty} R_i \supseteq E$, we have

$$\bigcup_{i=1}^{\infty} T(R_i) \supseteq T(E), \text{ and so } m^*(T(E)) \le \sum_{i=1}^{\infty} |T(R_i)|$$

Now by equation A, we have

$$|T(R_i)| = |h|(b_1 - a_1)|k|(b_2 - a_2)|l|(b_3 - a_3)$$

= $|hkl||r_i|$

Hence
$$m^*(T(E)) \le |hkl| \sum_{i=1}^{\infty} |R_i| \le |hkl| (m^*(E) + \epsilon)$$

Thus

$$m^*(T(E)) \le |hkl| m^*(E) \tag{1}$$

Now consideration of the inverse transformation T^{-1} applied to the set T(E)shows similarly that

$$m^*(E) = M^*(T^{-1}(T(E))) \le \frac{1}{|hkl|} m^*(T(E))$$
 i.e.

$$m^*(T(E)) \ge |hkl|m^*(E) \tag{2}$$

Thus by (1) and (2),

$$m^*(T(E)) = |hkl|m^*(E)$$

If E is measurable, then for any set A, $m^*(A) = M^*(A - E) + m^*(A \cap E)$ Now let m B be an arbitrary subset of \mathbb{R}^3 . Taking $A = T^{-1}(B)$

$$m^*(T^{-1}(B)) = m^*(T^{-1}(B) - E) + m^*(T^{-1}(B) \cap E)$$

= $m^*(T^{-1}(B - T(E))) + m^*(T^{-1}(A \cap T(E)))$

Thus we have

$$\frac{1}{|hkl|}m^*(B) = \frac{1}{|hkl|}m^*(B - T(E)) + \frac{1}{|hkl|}m^*(B \cap T(E))$$

Hence, cancelling $\frac{1}{|hkl|}$, T(E) is measurable.

Let
$$E = \left\{ (x, y, z) \middle| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\}$$

Let
$$S = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$

Let $T : (x, y, z) \to (|a|x, |b|y, |c|z)$

Let
$$T:(x,y,z)\to (|a|x,|b|y,|c|z)$$

Then T(S) = E

Hence $m^*(E) = |abc|m^*(S)$

S and E are closed and so measurable. S so the unit sphere, so $m(S) = \frac{4}{3}\pi$ Hence $m(E) = \frac{4}{3}\pi |abc|$