Question

A space ship approaches a planet of mass M along the path (relative to the planet)

$$
\frac{l}{r}=1+2 \cos \phi
$$

(a) Show that the closest approach (if there is no collision) is to $R=\frac{1}{3} l$ at $\phi=0$.
(b) Differentiate to find \ddot{r} in terms of l and $\dot{\phi}^{2}$ at the point of closest approach. Use this result, and the fact that the spaceship's acceleration toward the planet is known in terms of G and M at that position, to find the speed at the closest approach in terms of G, M and l.

Answer

(a) Stationary point of $r(\phi)$ is when $r^{\prime}(\phi)=0 ; \frac{l}{r}=1+2 \cos \phi$ i.e. $\frac{d r}{d \phi}=-\frac{l}{(1+2 \cos \phi)} \times-2 \sin \phi=0 \Rightarrow \phi=0, \pi$ Inspection gives that $\phi=0$ is the minimum value i.e. $R=\frac{l}{3}$
(b) $r=\frac{l}{1+2 \cos \phi} \Rightarrow \dot{r}=-\frac{l}{(1+2 \cos \phi)^{2}} \times-2 \sin \phi \dot{\phi}=\frac{2 l \sin \phi \dot{\phi}}{(1+2 \cos \phi)^{2}}$

Therefore
$\ddot{r}=2 l\left\{\frac{\cos \phi \dot{\phi}^{2}}{(1+2 \cos \phi)^{2}}+\frac{\sin \phi \ddot{\phi}}{(1+2 \cos \phi)^{2}}+\frac{4 \sin \phi \dot{\phi}^{2}}{(1+2 \cos \phi)^{3}}\right\}$
Therefore $\ddot{r}=\frac{2 l \dot{\phi}}{9}$ at the closest approach $\phi=0$
Using Newton's 2nd law; radial component:

$$
\begin{aligned}
m\left(\ddot{r}-r \dot{\phi}^{2}\right) & =-\frac{\mu}{r^{2}} \\
m\left(\frac{2 l}{g} \dot{\phi}^{2}-r \dot{\phi}^{2}\right) & =-\frac{\mu}{r^{2}} \\
m\left(\frac{2 l}{9}=\frac{l}{3}\right) \dot{\phi}^{2} & =-\frac{\mu}{l^{2}} 9 \\
\dot{\phi}^{2} & =\frac{81 \mu}{l^{3} m}
\end{aligned}
$$

The speed is purely tangential at closest approach (as $\dot{r}=0$)
so $v=r \dot{\phi}=\frac{l}{3} \sqrt{\frac{81 \mu}{l^{3} m}}=3 \sqrt{\frac{\mu}{m l}}$
Now $\mu=G M m$ Therefore $v=3 \sqrt{\frac{G M}{l}}$

