Question

A space ship approaches a planet of mass M along the path (relative to the planet)

$$\frac{l}{r} = 1 + 2\cos\phi$$

- (a) Show that the closest approach (if there is no collision) is to $R = \frac{1}{3}l$ at $\phi = 0$.
- (b) Differentiate to find \ddot{r} in terms of l and $\dot{\phi}^2$ at the point of closest approach. Use this result, and the fact that the spaceship's acceleration toward the planet is known in terms of G and M at that position, to find the speed at the closest approach in terms of G, M and l.

Answer

(a) Stationary point of $r(\phi)$ is when $r'(\phi) = 0$; $\frac{l}{r} = 1 + 2\cos\phi$

i.e.
$$\frac{dr}{d\phi} = -\frac{l}{(1+2\cos\phi)} \times -2\sin\phi = 0 \Rightarrow \phi = 0, \pi$$

Inspection gives that $\phi = 0$ is the minimum value i.e. $R = \frac{l}{3}$

(b) $r = \frac{l}{1 + 2\cos\phi} \Rightarrow \dot{r} = -\frac{l}{(1 + 2\cos\phi)^2} \times -2\sin\phi \,\dot{\phi} = \frac{2l\sin\phi \,\dot{\phi}}{(1 + 2\cos\phi)^2}$

Therefore

$$\ddot{r} = 2l \left\{ \frac{\cos \phi \, \dot{\phi}^2}{(1 + 2\cos \phi)^2} + \frac{\sin \phi \, \ddot{\phi}}{(1 + 2\cos \phi)^2} + \frac{4\sin \phi \, \dot{\phi}^2}{(1 + 2\cos \phi)^3} \right\}$$

Therefore $\ddot{r} = \frac{2l\dot{\phi}}{9}$ at the closest approach $\phi = 0$

Using Newton's 2nd law; radial component:

$$m(\ddot{r} - r\dot{\phi}^2) = -\frac{\mu}{r^2}$$

$$m\left(\frac{2l}{g}\dot{\phi}^2 - r\dot{\phi}^2\right) = -\frac{\mu}{r^2}$$

$$m\left(\frac{2l}{9} = \frac{l}{3}\right)\dot{\phi}^2 = -\frac{\mu}{l^2}9$$

$$\dot{\phi}^2 = \frac{81\mu}{l^3m}$$

The speed is purely tangential at closest approach (as $\dot{r} = 0$)

so
$$v = r\dot{\phi} = \frac{l}{3}\sqrt{\frac{81\mu}{l^3m}} = 3\sqrt{\frac{\mu}{ml}}$$

Now
$$\mu = GMm$$
 Therefore $v = 3\sqrt{\frac{GM}{l}}$