Question

A satellite is initially near a planet, at a distance r_0 with perpendicular velocity v_0 , where $r_0v_0^2<\frac{\mu}{m}$. Show that $\ddot{r}_0<0$ so that the orbit must have the form

$$\frac{l}{r} = 1 - e\cos\phi$$

if $\phi = 0$ is the initial line. If the planet has radius R what is the condition on R for the satellite to hit the planet? Where is the impact?

Answer

Newton's 2nd law:
$$\ddot{r} - r\dot{\phi}^2 = -\frac{\mu}{mr^2}$$
 $r^2\dot{\phi} = h$
 $h = r_0v_0$ (as initially $\mathbf{v} = v_0\mathbf{e}_{\phi}, r = r_0$)
 $\ddot{r} = r\frac{h^2}{r^4} - \frac{\mu}{mr^2} = \frac{r_0^2v_0^2}{r_0^3} - \frac{\mu}{mr_0^2} = \frac{mr_0^2v_0^2 - \mu}{mr_0^2} < 0$ as $mr_0v_0^2 < \mu$
 $\frac{l}{r} = 1 - e\cos\phi$ therefore $\frac{l}{r_0} = 1 - e\cos0 \Rightarrow \frac{l}{r_0} = 1 - e$
The planet has radius R , thus the satellite hits at $\phi = \phi_0$,

when
$$\frac{l}{r} = 1 - e \cos \phi_0$$
.

This only has a solution if $\frac{l}{r} \leq 1 + e$, therefore $R \geq \frac{l}{1+e} = \frac{r_0(1-e)}{1+e}$.

Impact is at
$$\cos \phi_0 = \frac{1}{e} \left(1 - \frac{l}{R} \right)$$

i.e.,
$$\cos \phi_0 = \frac{1}{e} \left(1 - \frac{r_0(1-e)}{R} \right)$$