Question

There are many reasons why $\mathbf{F}=-\frac{G m M}{r^{2}} \mathbf{e}_{r}$ is not exactly correct for a planet's orbit. Suppose that the correct force is

$$
\mathbf{F}=-\frac{G m M}{r^{2}}\left(1+\frac{k}{r}\right) \mathbf{e}_{r},
$$

with $\frac{k}{r} \ll 1$ (so that inverse square gravity is very nearly correct).
(a) Show that the equation for the orbit is

$$
\frac{d^{2} u}{d \theta^{2}}+u=\left(\frac{\mu}{m h^{2}}\right)(1+k u)
$$

(b) Solve this (linear) equation, and show that any bounded resulting orbit has apses separated by an angle $\pi+\frac{1}{2} \frac{\pi k \mu}{m h^{2}}$ approximately.

Answer

(a) book work: plug in for E
(b) Solve ordinary differential equation.

$$
u=\frac{\mu}{m h^{2}\left(1-\frac{k \mu}{m h^{2}}\right)}+A \cos \left\{\phi \sqrt{1-\frac{\mu k}{m h^{2}}}\right\}
$$

An apse occur when $\frac{d u}{d \phi}=0$
i.e.

$$
\begin{aligned}
\sin \left(\phi \sqrt{1-\frac{k \mu}{m h^{2}}}\right) & =0 \\
\phi & =0, \frac{\pi}{\sqrt{1-\frac{\mu k}{m h^{2}}}} \text { etc. }
\end{aligned}
$$

Now the angle between the apses is $\frac{\pi}{\sqrt{1-\frac{\mu k}{m h^{2}}}} \approx \pi+\frac{1}{2} \frac{\mu k}{m h^{2}}+\ldots$

