Question

Describe the characteristic properties of the Poisson process. Let X(t) denote the total number of events occurring in a time interval of length t in a compound Poisson process. Then X(t) has probability generating function

$$G_t 9z = \exp(\lambda t A(z) - \lambda t).$$

Explain what is meant by a compound Poisson process, and the meaning of λ and A(z) in the formula for $G_t(z)$.

Coachloads of student visit the Hirst memorial museum every day. It is open from 8 a.m. to 6 p.m. Coaches arrive according to a Poisson process of rate λ an hour, and each coach carries a full load of n passengers. Each visitor decides independently with probability p to contribute 1 towards upkeep of the museum. Find the mean and variance of the total amount of money contributed each day.

Answer

Let N(a, b) denote the number of events occurring in the time interval $a < t \le b$. This is an integer-valued random variable. These random variables form a Poisson process if the following properties hold.

- (i) Numbers of events in non-overlapping intervals are independent.
- (ii) The probabilities of an event occurring in a small time interval is roughly proportional to its length.

i e

$$P(N(t, t + \delta t) = 1) = \lambda \delta t + o(\delta t)$$

$$P(N(t, t + \delta t) = 0) = 1 - \lambda \delta t + o(\delta t)$$

as $\delta t \to 0$.

- (iii) λ is constant i.e. we have time homogeneity.
- (i) and (ii) is equivalent to saying that the number of events occurring in a time interval of length t has a Poisson distribution with parameter λt .

Now suppose that

(a) points occur in a Poisson process with rate λ . Let N(t) be the number of events in time t.

- (b) Y_i events occur at each point, where the Y_i are i.i.d random variables
- (c) Y_1, Y_2, \cdots and N(t) are independent.

The total number of events occurring in time t is

$$X(t) = \sum_{i=1}^{N(t)} Y_i$$

and is said to have a compound Poisson distribution. If each Y_i has probability generating function A(z) then X(t) has probability generating function

$$G_t(z) = \exp(\lambda t A(z) - \lambda t)$$

In this example the number of people in a coachload who decide to contribute will be a B(n p) random variable, with probability generating function $(q + pz)^n$, where q = 1 - p.

The museum is open for 10 hours, and so the probability generating function for the total contribution is

$$G(z) = \exp(10\lambda(q + pz)^n - 10\lambda)$$

The mean is given by G'(1) and the variance by $G''(1) + G'(1) - G'(1)^2$.

$$G(z) = \exp(-10\lambda) \cdot \exp(10\lambda(q + pz)^{n})$$

$$G'(z) = \exp(-10\lambda) \cdot \exp(10\lambda(q + pz)^{n}) \cdot 10\lambda np(q + pz)^{n-1}$$
so $G'(1) = 10\lambda np$ since $p + q = 1$

$$G''(z) = \exp(-10\lambda) \cdot \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}n^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 100\lambda^{2}p^{2}(q + pz)^{2(n-1)}$$

$$+ \exp(-10\lambda) \exp(10\lambda(q + pz)^{n}) \cdot 10\lambda^{2}p$$