Question

A simple random random walk has the set {0, 1, 2, cdots, a — 1, 1} as
possible states. States 0 and a are reflecting barriers from which reflection
is certain, i.e., if the random walk is in state 0 or a at step n the it will
be in state 1 or state a — 1 respectively at step n + 1. For all other states,
transitions of +1, —1, 0 take place with non-zero probabilities p, ¢, 1—p—gq
respectively.

Let pgn)k denote the probability that the random walk is in state k£ at step n,
having started in state j. Obtain difference equations relating these proba-
bilities, for the cases k=0, 1, a, a—land 1 <k <a—1.

Assuming that there is a long-term equilibrium probability distribution (),
where

T = nh_{rolopgn)k for 0 <j<a,

use the difference equations derived to obtain difference equations of 7.
Solve these equations recursively, or other-wise, to obtain explicit formulae
for m;, in terms of p, ¢ and a.

Answer
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Assuming the existence of an equilibrium distribution, taking limits in the
above equations gives:

To = qm (1)
m = m+qm+(1—p—qm (2)
pr = Pt @+ (1 —p—q)m (3)
Ma—1 = Phg—2+ T+ (1 —D— q)ﬂ'a,1 (4>
Ta = DPTa-1 (5>

Equation (1) gives m = 371'0.
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(5) then gives m, = pm,_1 = | = o

(This is consistent with (4) as expected)
Now Zwk =1 and so
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which gives the formulae3 for 7y, as these are in terms of 7y above.



