Exam Question
Topic: Surfacelntegral The dean’s trophy presented to the best lecturer
of the year is in the shape of the upper half of a cylinder, specified by

y2+z2:1,220, 0<z<1.

The curved part of the surface is to be covered with an iridescent foil made of
a mixture of precious metals, where the composition varies so as to achieve a
colour change over the surface. The density at a point (z,y, z) on the surface
is given by (1 + 2z?).

Calculate the total mass of foil by evaluating an appropriate surface integral.

Solution
The equation of the surface can be rewritten as z = /1 — y2, so
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Therefore we have
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The mass is therefore given by
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